
Prepared for
Brank Dev
Avantis Labs, Inc.

Prepared by
Nipun Gupta
Kuilin Li
Zellic

December 1, 2023

Avantis
Smart Contract Security Assessment

Avantis Smart Contract Security Assessment December 1, 2023

Contents About Zellic 6

1. Executive Summary 6

1.1. Goals of the Assessment 7

1.2. Non-goals and Limitations 7

1.3. Results 7

2. Introduction 8

2.1. About Avantis 9

2.2. Methodology 9

2.3. Scope 11

2.4. Project Overview 11

2.5. Project Timeline 12

3. Detailed Findings 12

3.1. Stop loss higher than openPricemay cause fund loss 13

3.2. Unsafe cast in take profit can lead to fund loss 18

3.3. The function setWithdrawThreshold lacks access control 21

3.4. Reserve requirement and fees checked before withdrawal 22

3.5. Locked shares have undue access to historical rewards 24

3.6. Max profit can exceed amount reserved from vault 26

3.7. Updatemargin uses new leverage for balance release 29

3.8. Partial trades update open-interest incorrectly 31

3.9. Referrer rebatesmust not decrease totalRewards 33

Zellic © 2023 ← Back to Contents Page 2 of 117

Avantis Smart Contract Security Assessment December 1, 2023

3.10. Precision loss in totalLockPoints causes undue rewards and insolvency 36

3.11. Wrong reserve ratio returned by getReserveRatiowhen constrained 39

3.12. Loss-protection tier is reduced for trades that greatly reduce skew 41

3.13. Tranche trading inflow ismuch less than outflow in zero skew 43

3.14. Arbitrage opportunities with older price feeds 45

3.15. The useBackupOnlymode allows unduemargin update withdrawals 47

3.16. The applyReferralClose function returns fee with referrer rebate 49

3.17. Bot latencymay prevent execution of limit-close orders 51

3.18. Referrer-code transfers overwrite recipient codes andmisalign tiers 53

3.19. Delayed force unlock causes reward insolvency 55

3.20. Price impact is not tracked cumulatively 56

3.21. Loss protection reduces the -100% cap on losses 58

3.22. Variable reuse causes totalPrincipalDepositedmiscalculation 60

3.23. Governance fee chargedwithout market-order placement 62

3.24. One account can register multiple referral codes 63

3.25. Vault manager withdrawals cannot access the entire junior tranche 64

3.26. The maxRedeem function should comply with ERC-4626 66

3.27. Incorrect access control of setVaultManager causes update lockout 67

3.28. Trader contract can bypassmax trades per pair 68

3.29. Limit-order timelock is not initialized on open 69

3.30. Partial closes emit incorrect value in TradeReferred event 70

3.31. Function openTrade lacks incorrect-payment sanity checks 72

3.32. Timestamp updated inmemory instead of storage 73

3.33. Withdraw to different receiver imbalances stats 75

3.34. Tranche name hardcodes junior symbol 77

Zellic © 2023 ← Back to Contents Page 3 of 117

Avantis Smart Contract Security Assessment December 1, 2023

3.35. Function distributeRewards does not need totalLockPoints 78

3.36. Incorrect ternary operator precedence in limit-open-order callback 79

3.37. Unused vault-fee parameter must be zero 81

3.38. Execute trigger check never fails due to atomicity 82

4. Discussion 82

4.1. Referral code incentives aremisaligned 83

4.2. VeTranche NFT info should be struct 83

4.3. Noway to remove user from Trading whitelist 83

4.4. Pyth price can become negative or erratic 84

4.5. Tranche has unnecessary ReentrancyGuard 84

4.6. Checks-effects-interactions pattern broken 84

4.7. Typos 85

5. ThreatModel 85

5.1. Module: Execute.sol 86

5.2. Module: Referral.sol 86

5.3. Module: TradingStorage.sol 89

5.4. Module: Trading.sol 89

5.5. Module: Tranche.sol 108

5.6. Module: VaultManager.sol 109

5.7. Module: VeTranche.sol 110

Zellic © 2023 ← Back to Contents Page 4 of 117

Avantis Smart Contract Security Assessment December 1, 2023

6. Assessment Results 116

6.1. Disclaimer 117

Zellic © 2023 ← Back to Contents Page 5 of 117

Avantis Smart Contract Security Assessment December 1, 2023

About Zellic Zellic was founded in 2020 by a team of blockchain specialists withmore than a decade of com-
bined industry experience. We are leading experts in smart contracts and Web3 development,
cryptography, web security, and reverse engineering. Before Zellic, we founded perfect blue ↗,
the top competitive hacking team in the world. Since then, our team has won countless cyber-
security contests and blockchain security events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual, unique con-
cerns and business needs. Our goal is to see the long-term success of our partners rather than
simply provide a list of present security issues. Similarly, we strive to adapt to our partners’ time-
linesand tobeasavailable aspossible. To keepupwithour latest endeavors and research, check
out ourwebsite zellic.io ↗ or follow@zellic_io ↗ on Twitter. If you are interested in partneringwith
Zellic, please contact us at hello@zellic.io ↗.

Zellic © 2023 ← Back to Contents Page 6 of 117

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Avantis Smart Contract Security Assessment December 1, 2023

1. Executive Summary Zellic conducted a security assessment for Avantis Labs, Inc. from November 6th to November
24th, 2023. During this engagement, Zellic reviewed Avantis’s code for security vulnerabilities,
design issues, and general weaknesses in security posture.

1.1. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that wewish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• How do the liquidations work? Are the liquidations triggered at correct prices?
• Are the stop-loss and take-profit orders triggered at correct prices?
• Is it possible for the protocol to incur bad debt?
• Does the protocol stay solvent during various scenarios?
• Will the oracle provide the correct price feeds? If not, what effects would that have?
• Is it possible to create trades that exploit a vulnerability in the protocol and extract
value from the protocol?

1.2. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody
• Bots responsible for tracking and executing liquidations, limit order, and stop-limit
orders

• Bots responsible for unlocking overdue locked tranches, distributing rewards at
regular intervals, setting orderbook depth for dynamic spread on crypto pairs, and
snapshotting the current open PNL of all trades to update the buffer ratio

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.3. Results

During our assessment on the scoped Avantis contracts, we discovered 38 findings. Six critical
issues were found. Seven were of high impact, eight were of medium impact, 10 were of low

Zellic © 2023 ← Back to Contents Page 7 of 117

Avantis Smart Contract Security Assessment December 1, 2023

impact, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Avantis Labs,
Inc.’s benefit in the Discussion section (4. ↗) at the end of the document.

Breakdown of Finding Impacts

Impact Level Count

■ Critical 6

■ High 7

■ Medium 8

■ Low 10

■ Informational 7

Zellic © 2023 ← Back to Contents Page 8 of 117

Avantis Smart Contract Security Assessment December 1, 2023

2. Introduction 2.1. About Avantis

Avantis is developing a user-friendly, decentralized, leveraged trading platformwhere users can
longor short synthetic crypto, FOREX, andcommodities using afinancial primitive calledperpet-
uals.

Synthetic leverage combined with a USDC stablecoin LP makes Avantis very capital efficient,
allowing for a wide selection of tradable assets and high leverage (up to 100x). They are also
unlocking fine-grained riskmanagement for LPs via time and risk parameters, allowing any LP to
be a sophisticatedmarket maker for all kinds of derivatives, starting with perpetual.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing,
including both automated testing and manual review. These processes can vary significantly
per engagement, but themajority of the time is spent on a thoroughmanual review of the entire
scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily
on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by code
review. Depending on the engagement, we may also employ sophisticated analyzers
such as model checkers, theorem provers, fuzzers, and so on as necessary. We also
perform a cursory review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomics or dangerous arbitrage opportunities. To the best of our abilities, time
permitting, we also review the contract logic to ensure that the code implements the
expected functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug
within the contract itself; rather, they are an unintended consequence of the contract’s
interaction with the broader DeFi ecosystem. Time permitting, we review external
interactions and summarize the associated risks: for example, flash loan attacks, oracle
pricemanipulation, MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality standards.
We also provide suggestions for possible optimizations, such as gas optimization,
upgradability weaknesses, centralization risks, and so on.

For eachfinding, Zellic assigns it an impact ratingbasedon its severity and likelihood. There is no

Zellic © 2023 ← Back to Contents Page 9 of 117

Avantis Smart Contract Security Assessment December 1, 2023

hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue’s impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low,
and Informational.

Zellic organizes its reports such that the most important findings come first in the document,
rather than being strictly ordered on impact alone. Thus, we may sometimes emphasize an
“Informational” finding higher than a “Low” finding. The key distinction is that although certain
findings may have the same impact rating, their importance may differ. This varies based on
various soft factors, like our clients’ threat models, their business needs, and so on. We aim to
provide useful and actionable advice to our partners considering their long-term goals, rather
than a simple list of security issues at present.

Finally, Zellicprovidesa list ofmiscellaneousobservations thatdonothavesecurity impactorare
not directly related to the scoped contracts itself. These observations— found in the Discussion
(4. ↗) sectionof thedocument—may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2023 ← Back to Contents Page 10 of 117

Avantis Smart Contract Security Assessment December 1, 2023

2.3. Scope

The engagement involved a review of the following targets:

Avantis Contracts

Repository https://github.com/brankdev/avantis-contracts ↗

Version avantis-contracts: 6f5c88ced715c2346dd805f2a93782105fd49254

Programs • Execute
• PairInfos
• PairStorage
• PriceAggregator
• Referral
• Trading
• TradingCallbacks
• TradingStorage
• Tranche
• VaultManager
• VeTranche

Type Solidity

Platform EVM-compatible

2.4. Project Overview

Zellic was contracted to perform a security assessment with two consultants for a total of six
person-weeks. The assessment was conducted over the course of three calendar weeks.

Contact Information

Zellic © 2023 ← Back to Contents Page 11 of 117

https://github.com/brankdev/avantis-contracts

Avantis Smart Contract Security Assessment December 1, 2023

The following project manager was associ-
ated with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Nipun Gupta
Engineer
nipun@zellic.io ↗

Kuilin Li
Engineer
kuilin@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

November 3, 2023 Kick-off call

November 6, 2023 Start of primary review period

November 24, 2023 End of primary review period

Zellic © 2023 ← Back to Contents Page 12 of 117

mailto:chad@zellic.io
mailto:nipun@zellic.io
mailto:kuilin@zellic.io

Avantis Smart Contract Security Assessment December 1, 2023

3. Detailed Findings 3.1. Stop loss higher than openPricemay cause fund loss

Target TradingCallbacks

Category Business Logic Severity Critical

Likelihood High Impact Critical

Description

The function openTrade is used to open a newmarket or limit trade. While creating a limit order,
the openPrice could be set to any value. For a buy order, the value of stop loss should always be
less than this openPrice due to the check t.sl < t.openPrice as shown below in openTrade:

function openTrade(
ITradingStorage.Trade calldata t,
IExecute.OpenLimitOrderType _type,
uint _slippageP,
bytes[] calldata priceUpdateData,
uint _executionFee // In USDC. Optional for Limit orders

) external payable onlyWhitelist whenNotPaused {
//...
require(t.tp == 0 || (t.buy ? t.tp > t.openPrice : t.tp < t.openPrice),

"WRONG_TP");
require(t.sl == 0 || (t.buy ? t.sl < t.openPrice : t.sl > t.openPrice),

"WRONG_SL");

storageT.transferUSDC(msg.sender, address(storageT),
t.positionSizeUSDC + _executionFee);

if (_type != IExecute.OpenLimitOrderType.MARKET) {
uint index = storageT.firstEmptyOpenLimitIndex(msg.sender,

t.pairIndex);

storageT.storeOpenLimitOrder(
ITradingStorage.OpenLimitOrder(

msg.sender,
t.pairIndex,
index,
t.positionSizeUSDC,
t.buy,
t.leverage,
t.tp,
t.sl,

Zellic © 2023 ← Back to Contents Page 13 of 117

Avantis Smart Contract Security Assessment December 1, 2023

t.openPrice,
t.openPrice,
block.number,
_executionFee

)
);

aggregator.executions().setOpenLimitOrderType(msg.sender,
t.pairIndex, index, _type);

emit OpenLimitPlaced(msg.sender, t.pairIndex, index,
block.timestamp, _executionFee);

} else //...
}

When a limit order is created, the maxPrice and the minPrice are set to the openPrice provided
by user. If the order type is MOMENTUM, the executeLimitOrder could be called without errors as
the require check a.price <= o.maxPrice in the executeLimitOpenOrderCallback callback
function would pass as shown below:

function executeLimitOpenOrderCallback(AggregatorAnswer memory a)
external override onlyPriceAggregator {

//...
if (pairsStored.pairGroupIndex(o.pairIndex) == 0) {

// crypto only
(, uint priceAfterImpact) = pairInfos.getTradePriceImpact(

_marketExecutionPrice(a.price, a.spreadP, o.buy),
o.pairIndex,
o.buy,
o.positionSize.mul(o.leverage)

);

a.price = priceAfterImpact;
} else {

a.price = _marketExecutionPrice(a.price, a.spreadP, o.buy);
}

if (
t == IExecute.OpenLimitOrderType.MARKET

? (a.price >= o.minPrice && a.price <= o.maxPrice)
: (

t == IExecute.OpenLimitOrderType.REVERSAL
? (o.buy ? a.price >= o.maxPrice : a.price <= o.minPrice)
: (o.buy ? a.price <= o.maxPrice : a.price >= o.minPrice)

) && _withinExposureLimits(o.trader, o.pairIndex,
o.positionSize.mul(o.leverage))

Zellic © 2023 ← Back to Contents Page 14 of 117

Avantis Smart Contract Security Assessment December 1, 2023

) {
ITradingStorage.Trade memory finalTrade = _registerTrade(

ITradingStorage.Trade(
o.trader,
o.pairIndex,
0,
0,
o.positionSize,
a.price, // current price
o.buy,
o.leverage,
o.tp,
o.sl, // large value
0

)
);

Here, the a.price is the current priceof the token, o.sl is still larger than this price, and the trade
would be registered. As the stop loss is greater than the current price of the token, the stop loss
could be triggered successfully. When the stop loss is triggered, the profitP is calculated in the
callback function executeLimitCloseOrderCallback:

function executeLimitCloseOrderCallback(AggregatorAnswer memory a)
external override onlyPriceAggregator {

//...
v.price = aggregator.pairsStorage().guaranteedSlEnabled(t.pairIndex)
? o.orderType == ITradingStorage.LimitOrder.TP ? t.tp :

o.orderType == ITradingStorage.LimitOrder.SL
? t.sl
: a.price

: a.price;

v.profitP = _currentPercentProfit(t.openPrice, v.price, t.buy,
t.leverage);

v.posToken = t.initialPosToken;
v.posUSDC = t.initialPosToken;

if (o.orderType == ITradingStorage.LimitOrder.LIQ) {
uint liqPrice = pairInfos.getTradeLiquidationPrice(

t.trader,
t.pairIndex,
t.index,
t.openPrice,
t.buy,
v.posUSDC,

Zellic © 2023 ← Back to Contents Page 15 of 117

Avantis Smart Contract Security Assessment December 1, 2023

t.leverage
);
v.reward = (t.buy ? a.price <= liqPrice : a.price >= liqPrice) ?

(v.posToken * liqFeeP) / 100 : 0;
} else {

v.reward = (o.orderType == ITradingStorage.LimitOrder.TP &&
t.tp > 0 &&
(t.buy ? a.price >= t.tp : a.price <= t.tp)) ||
(o.orderType == ITradingStorage.LimitOrder.SL &&

t.sl > 0 &&
(t.buy ? a.price <= t.sl : a.price >= t.sl))

? (
v.posToken.mul(t.leverage) *
aggregator.pairsStorage().pairLimitOrderFeeP(t.pairIndex)

) / 100 / _PRECISION
: 0;

}

if (o.orderType == ITradingStorage.LimitOrder.LIQ && v.reward > 0) {
uint usdcSentToTrader = _unregisterTrade(

t,
v.profitP,
v.posUSDC,
v.reward,
(v.reward * (liqTotalFeeP - liqFeeP)) / liqFeeP,
i.lossProtection

);

When the profitP is calculated, it will set the v.price to the t.sl, which was higher than the
current price of the token. Due to the vulnerability — as the t.sl could be set higher than the
t.openPrice— it would always return in positive net profit when this function is called. The stop
loss could be set to a really large value, leading to the maximum profit (900%) as allowed by the
protocol and fund loss.

Here is an example trade:

Start
Balance of trader before: 10000000000
Trader places a limit order with large openPrice and stop loss just below
it. Here is an example trade:
trade.trader = _trader;
trade.pairIndex = _pairIndex;
trade.index = _index;
trade.initialPosToken = 0;
trade.positionSizeUSDC = _amount;
trade.openPrice = 100000e10;

Zellic © 2023 ← Back to Contents Page 16 of 117

Avantis Smart Contract Security Assessment December 1, 2023

trade.buy = true;
trade.leverage = 10e10;
trade.tp = 0;
trade.sl = 100000e10-1;
trade.timestamp = block.number;

When the open order is executed, the openPrice is changed to the current
price + price impact:
OpenPrice for the long order 505252500000000
Stop loss for the long order 999999999999999

Stop loss is then immediately executed as the value of stop loss is
greater than the current price.

Balance of trader after: 97911000000

Impact

An attacker can create a malicious trade such that they always make 900% returns instantly.
They could use this to drain the protocol.

Recommendations

Afterwediscussed the issuewith theAvantis team, theysuggestedremoving theMOMENTUMorder
type, which prevents users fromsetting stop loss higher than the current price and prevents this
issue.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
2609b4c5 ↗.

Zellic © 2023 ← Back to Contents Page 17 of 117

https://github.com/brankdev/avantis-contracts/commit/2609b4c50607d3ff52496a0e3fae5c3bc3aad6b5

Avantis Smart Contract Security Assessment December 1, 2023

3.2. Unsafe cast in take profit can lead to fund loss

Target TradingCallbacks

Category Business Logic Severity Critical

Likelihood High Impact Critical

Description

For any open trade, the value of take profit can be set to any large value using the functions up-
dateTp and updateTpAndSl. If the value of _newTP is set to type(uint256).max for a sell order,
the function _currentPercentProfit will calculate the percent profit as the max gain percent
(900%) due to the casting from uint256 to int.

function _currentPercentProfit(
uint openPrice,
uint currentPrice,
bool buy,
uint leverage

) private pure returns (int p) {
int diff = buy ? (int(currentPrice) - int(openPrice)) :

(int(openPrice) - int(currentPrice));
int minPnlP = int(_PRECISION) * (-100);
int maxPnlP = int(_MAX_GAIN_P) * int(_PRECISION);
p = (diff * 100 * int(_PRECISION.mul(leverage))) / int(openPrice);
p = p < minPnlP ? minPnlP : p > maxPnlP ? maxPnlP : p;

}

For example, the TP can be updated to type(uint256).max using updateTp or updateTpAndSl.
In case executeLimitOrder is called of the type LimitOrder.TP for a sell order, the value
of currentPrice in _currentPercentProfit will be type(uint256).max. When this value is
casted to int, it will become -1, and thus the diff would be openPrice + 1 and p will be-
come ≈100*int(_PRECISION.mul(leverage)). Therefore, if the leverage is greater than nine,
the function will return the profit as 900%.

The value of currentPrice can be set to t.tp in executeLimitCloseOrderCallback if the trade
is of type LimitOrder.TP as shown below.

v.price = aggregator.pairsStorage().guaranteedSlEnabled(t.pairIndex)
? o.orderType == ITradingStorage.LimitOrder.TP ? t.tp : o.orderType ==

ITradingStorage.LimitOrder.SL
? t.sl

Zellic © 2023 ← Back to Contents Page 18 of 117

Avantis Smart Contract Security Assessment December 1, 2023

: a.price
: a.price;

v.profitP = _currentPercentProfit(t.openPrice, v.price, t.buy, t.leverage);

Here is an example trade to execute the attack:

Start
Balance of trader before: 1000000000
Trader creates a short position:
trade.trader = _trader;
trade.pairIndex = _pairIndex;
trade.index = _index;
trade.initialPosToken = 0;
trade.positionSizeUSDC = _amount;
trade.openPrice = _price;
trade.buy = true;
trade.leverage = 10e10;
trade.tp = 0;
trade.sl = 0;
trade.timestamp = block.number;

Trader calls `updateTp` with the `_newTp` as
`0xff`

When execute limit close is called of type `LimitOrder.TP`, the trader
receives 900% profit.

Balance of trader after: 9791100000

Impact

An attacker can create a malicious trade such that they always make 900% returns instantly.
They could use this to drain the protocol.

Recommendations

While setting a new TP price, use the function _correctTp to check if the TP is in correct range
using the callback.

Zellic © 2023 ← Back to Contents Page 19 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
de74d560 ↗.

Zellic © 2023 ← Back to Contents Page 20 of 117

https://github.com/brankdev/avantis-contracts/commit/de74d560b21f3905ddd540b05165d8f82acd7ccf

Avantis Smart Contract Security Assessment December 1, 2023

3.3. The function setWithdrawThreshold lacks access control

Target Tranche

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The external function setWithdrawThreshold is used to allow governance to set the withdraw
threshold parameter:

function setWithdrawThreshold(uint256 _withdrawThreshold) external {
require(_withdrawThreshold < 100 * _PRECISION, "THRESHOLD_EXCEEDS_MAX");
withdrawThreshold = _withdrawThreshold;
emit WithdrawThresholdUpdated(_withdrawThreshold);

}

However, this function lacks all access control.

Impact

Anyone can update the withdraw threshold at any time.

Front-runners can cause user withdrawals to revert by setting the withdrawThreshold to zero.
Users can change the withdrawThreshold to withdrawmore than intended.

Recommendations

Add themissing onlyGovmodifier to this function.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
4e5b1384 ↗.

Zellic © 2023 ← Back to Contents Page 21 of 117

https://github.com/brankdev/avantis-contracts/commit/4e5b1384ed6d0c2f54a373431e3c7c3d6e041cac

Avantis Smart Contract Security Assessment December 1, 2023

3.4. Reserve requirement and fees checked before withdrawal

Target Tranche

Category Business Logic Severity Critical

Likelihood High Impact Critical

Description

When withdrawing from Tranche, the utilization ratio is checked in _withdraw so that the with-
draw does not cause the protocol to become insolvent:

function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares

) internal virtual override {
require(utilizationRatio() < withdrawThreshold,

"UTILIZATION_RATIO_MAX");

uint256 fee = getWithdrawalFeesRaw(assets);

super._withdraw(caller, receiver, owner, assets, shares);

However, the call toutilizationRatio()callssuper.totalAssets(), which checks thecurrent
assets of the contract, and that has not changed yet. Similarly, getWithdrawalFeesRaw uses the
current assets in the contract, and only later in super._withdraw do the assets get transferred
out.

This means that the utilization ratio and withdrawal fees are calculated on the prewithdrawal
state, not the postwithdrawal state. The same thing happens with the balancing fee on deposit.

Impact

As long as the utilization ratio is currently not violated, a share owner canwithdraw any amount,
including an amount that would leave the utilization ratio violated after the USDC moves out of
the Tranche. Here is a proof-of-concept (POC) output:

Start

Zellic © 2023 ← Back to Contents Page 22 of 117

Avantis Smart Contract Security Assessment December 1, 2023

- Junior reserved = 0 actual = 0
- Senior reserved = 0 actual = 0
LP provides liquidity
- Junior reserved = 0 actual = 995024875621
- Junior util ratio % = 0
- Senior reserved = 0 actual = 1000000000000
- Senior util ratio % = 0
Traders open market longs
- Junior reserved = 92609441060 actual = 995024875621
- Junior util ratio % = 9
- Senior reserved = 49866622110 actual = 1000000000000
- Senior util ratio % = 4
LP withdraws liquidity
- Junior reserved = 92609441060 actual = 4777375621
- Junior util ratio % = 1938
- Senior reserved = 49866622110 actual = 9752500000
- Senior util ratio % = 511

At the end of the POC, the utilization ratio for the trancheswere 1938% and 511%, when it should
never be above 100%. This means the protocol has become insolvent and cannot pay all trader
profits or return trader collateral.

Additionally, even if the utilization ratio is currently violated, a share owner can still withdraw any
amount by first depositing a flash loan that brings the utilization ratio back under the threshold
and thenwithdrawing both the flash loan and the amount they wanted to withdraw.

The balancing fees on deposit and withdrawal fees on withdrawal can similarly be dodged with
a flash loan.

Recommendations

Ensure all relevant quantities used in these checks are calculated on post-action balances.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
2c45e310 ↗.

Zellic © 2023 ← Back to Contents Page 23 of 117

https://github.com/brankdev/avantis-contracts/commit/2c45e310214dbac5ef9a79e0edddc69a8598ca62

Avantis Smart Contract Security Assessment December 1, 2023

3.5. Locked shares have undue access to historical rewards

Target VeTranche

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

In VeTranche, the rewardsDistributedPerSharePerLockPoint state variable increases in order
to give rewards to all of the current locked positions. Each time rewards are distributed at the
request of the owner of the lock or when the lock expires, the difference between the current
value of this state variable and the last checkpoint for this variable is awarded:

function _updateReward(uint256 _id) internal {
if(lastSharePoint[_id] == rewardsDistributedPerSharePerLockPoint)

return;

uint256 pendingReward =
((rewardsDistributedPerSharePerLockPoint - lastSharePoint[_id]) *
tokensByTokenId[_id] *
lockMultiplierByTokenId[_id]) /
(_PRECISION **3);

rewardsByTokenId[_id] += pendingReward;
lastSharePoint[_id] = rewardsDistributedPerSharePerLockPoint;

}

However,whena lockedposition is initially created,lastSharePoint[id] is not set to thecurrent
value of rewardsDistributedPerSharePerLockPoint, and it is uninitialized and zero:

function lock(uint256 shares, uint endTime)
public nonReentrant returns (uint256) {

//...
tokensByTokenId[nextTokenId] = shares;
lockTimeByTokenId[nextTokenId] = endTime;
lockStartTimeByTokenId[nextTokenId] = block.timestamp;
rewardsByTokenId[nextTokenId] = 0;
lockMultiplierByTokenId[nextTokenId] =

getLockPoints(endTime - block.timestamp);
totalLockPoints +=

(shares * lockMultiplierByTokenId[nextTokenId]) / _PRECISION;

Zellic © 2023 ← Back to Contents Page 24 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Impact

Anewly lockedpositionwill be incorrectly awardedashareof all the rewardsdistributedbefore it
was locked. This causes the VeTranche to immediately become insolvent because the expected
amount of USDC it holds is more than the amount it will actually hold. The impact is that later
reward claimants will not be able to claim rewards.

Here is the output from the POC:

Start
LP 1 locks
LP 2 locks
- rewardsDistributedPerSharePerLockPoint = 0
- LP 1 reward = 0
- LP 2 reward = 0
- LP 3 reward = 0
Warp 7 days, rewards distributed
LP 1 unlocks
- rewardsDistributedPerSharePerLockPoint = 811376886
- LP 1 reward = 28815579507696
- LP 2 reward = 0
- LP 3 reward = 0
LP 3 locks and immediately unlocks
- rewardsDistributedPerSharePerLockPoint = 811376886
- LP 1 reward = 28815579507696
- LP 2 reward = 0
- LP 3 reward = 12738897024053
LP 2 tries to unlock
[FAIL. Reason: ERC20: transfer amount exceeds balance]

After rewardsaredistributed, LP3 locksand then immediatelyunlocks,whichmeans theyshould
not get any rewards. However, it does get rewards, and then after this, LP 2 cannot unlock due to
insufficient funds in the VeTranche.

Recommendations

Set the lastSharePoint[id] checkpoint to the current value of rewardsDistributedPer-
SharePerLockPoint in the lock function.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
fc4d4be1 ↗.

Zellic © 2023 ← Back to Contents Page 25 of 117

https://github.com/brankdev/avantis-contracts/commit/fc4d4be1818363c3acd20a9a032f4d2efa91e57c

Avantis Smart Contract Security Assessment December 1, 2023

3.6. Max profit can exceed amount reserved from vault

Target TradingCallbacks

Category Business Logic Severity Critical

Likelihood Medium Impact Critical

Description

When a new trade is finalized in _registerTrade, the amount reserved from the vault to ensure
that the trade can be closed is the leveraged position size:

function _registerTrade(ITradingStorage.Trade memory _trade)
private returns (ITradingStorage.Trade memory) {

//...
storageT.vaultManager().reserveBalance(

_trade.positionSizeUSDC.mul(_trade.leverage));
storageT.vaultManager().receiveUSDCFromTrader(

_trade.trader, _trade.positionSizeUSDC, 0);

This leveragedposition size is calculatedbymultiplying theunleveragedposition sizeposition-
SizeUSDC by the leverage.

However, the amount that the trader receives when closing the position is only capped at 900%
of the unleveraged position size:

function _currentPercentProfit(
uint openPrice,
uint currentPrice,
bool buy,
uint leverage

) private pure returns (int p) {
int diff = buy ? (int(currentPrice) - int(openPrice))

: (int(openPrice) - int(currentPrice));
int minPnlP = int(_PRECISION) * (-100);
int maxPnlP = int(_MAX_GAIN_P) * int(_PRECISION);
p = (diff * 100 * int(_PRECISION.mul(leverage))) / int(openPrice);
p = p < minPnlP ? minPnlP : p > maxPnlP ? maxPnlP : p;

}

Here, the constant _MAX_GAIN_P is 900%, and the function’s return value is later multiplied by
positionSizeUSDC to determine the amount of USDC sent back to the trader.

Zellic © 2023 ← Back to Contents Page 26 of 117

Avantis Smart Contract Security Assessment December 1, 2023

This means that if the leverage is less than 9x and the underlying price moves in the direction
the trader expected, the amount reserved from the vault can be less than the amount the trader
receives when they close the position.

Impact

The protocol can become insolvent if multiple low-leverage trades are profitable, because the
amount reservedwould be insufficient to cover rewards.

See thisPOCoutput,whereanLPsupplies liquidity, thenseveral tradersopen longpositionswith
2x leverage, and then the underlying price increases 5x so the trades close at max profit:

Start
- Junior reserved = 0 actual = 0
- Senior reserved = 0 actual = 0
LP provides liquidity
- Junior reserved = 0 actual = 995024875621
- Junior util ratio % = 0
- Senior reserved = 0 actual = 1000000000000
- Senior util ratio % = 0
Traders open low-leverage market longs
- Junior reserved = 18671560034 actual = 995024875621
- Junior util ratio % = 1
- Senior reserved = 10053916944 actual = 1000000000000
- Senior util ratio % = 1
Traders close positions at max profit
- Junior reserved = 0 actual = 920503530457
- Junior util ratio % = 0
- Senior reserved = 0 actual = 959873121832
- Senior util ratio % = 0

Out of the junior tranche, the traderswere in total awarded 995024875621-920503530457, which
is about 7.5e10, but only 18671560034, which is about 1.8e10, was reserved. Similarly, about 4e10
was taken out of the senior tranche, but only about 1e10 was reserved.

The following output is the same scenario, except before the traders close their max-profit posi-
tions, the LP decides to removemost of the unreserved liquidity:

Start
- Junior reserved = 0 actual = 0
- Senior reserved = 0 actual = 0
LP provides liquidity
- Junior reserved = 0 actual = 995024875621
- Junior util ratio % = 0
- Senior reserved = 0 actual = 1000000000000

Zellic © 2023 ← Back to Contents Page 27 of 117

Avantis Smart Contract Security Assessment December 1, 2023

- Senior util ratio % = 0
Traders open low-leverage market longs
- Junior reserved = 18671560034 actual = 995024875621
- Junior util ratio % = 1
- Senior reserved = 10053916944 actual = 1000000000000
- Senior util ratio % = 1
LP withdraws most liquidity
- Junior reserved = 18671560034 actual = 19361283100
- Junior util ratio % = 96
- Senior reserved = 10053916944 actual = 10309251944
- Senior util ratio % = 97
Traders close positions at max profit
[FAIL. Reason: ERC20: transfer amount exceeds balance]

After the LP withdraws most of the liquidity, the utilization ratios are 96% and 97%, so even if
Finding 3.4. ↗ is fixed, this withdrawal would still go through.

Next, the traders’ calls to Trading.closeTradeMarket unfortunately revert because inside the
Tranche.withdrawAsVaultManager, the call to USDC.transfer reverts as the tranches do not
have enough funds to send out. This shows that the reserved quantity was not sufficient.

Recommendations

Instead of reserving the leveraged position size, reserve an amount equal to the max amount
of USDC that the trader can potentially get back upon closing the position, maximized across
all values the underlying price can be in the future. This quantity will depend on the max profit
parameter and should not depend on the leverage.

Remediation

This issue has been acknowledged by Avantis as a risk that is within the risk tolerance of the
protocol. The maximum open interest and other safety limits on individual trades are expected
to collectively mitigate this risk.

Zellic © 2023 ← Back to Contents Page 28 of 117

Avantis Smart Contract Security Assessment December 1, 2023

3.7. Updatemargin uses new leverage for balance release

Target TradingCallbacks

Category Business Logic Severity High

Likelihood Medium Impact High

Description

The function updateMarginallowsusers todeposit orwithdrawUSDC from their openpositions.
When updating the margin order, there are fees (marginFees) that the users have to pay. These
feesareallocatedas rewards in thevaultmanager, andas the feesare taken fromtheoriginorder,
it is essential to release that balance and update the open interest related to the fees.

The function updateMargin stores the pending margin-update order using the function
storePendingMarginUpdateOrderandstores thenew leverage in the struct’soldLeveragefield.
Later, in the callback function updateMarginCallback, the o.marginFees.mul(o.oldLeverage)
value is used to release the balance and update the open interest.

As o.oldLeverage is the new leverage and not the old leverage, it would release an incorrect
amount of balance, and the open interest would also be updated using this incorrect value.

Impact

If more tokens are released from the vault, in the long term it could lead to losing positions not
being liquidated as there will not be enough balance in the vault to be released.

Also, using the new leverage and trade size makes the calculation for the withdrawal threshold
check incorrect when it interacts with the -100% loss cap.

For example, say the original investment was $100 with leverage 100x, the loss-protection mul-
tiplier is 80%, and the asset price changes by -0.5%. Now, the position has a PNL of -$50, which
is -$40 after the loss-protectionmultiplier, so the position is worth $60.

But, consider if the user tries towithdraw $75minus aWEI, so the newposition is $25 plus aWEI
and the new leverage is slightly less than 400x. Now, because the leverage is higher, the percent
profit will be -200%, reduced to -100% after the loss cap and then reduced to -80% due to the
loss protection tier, so it is $20. The require statement checks if $25 + aWEI - $20> ($25 + aWEI)
* 80%,which is true, so it allows theuser towithdraw theamountdespite it beingmore thanwhat
the position is worth.

Zellic © 2023 ← Back to Contents Page 29 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Recommendations

Pass the correct old leverage value in the storePendingMarginUpdateOrder function. En-
sure that the callback correctly uses the old value when checking if the withdraw threshold is
breached.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
d625039e ↗.

Zellic © 2023 ← Back to Contents Page 30 of 117

https://github.com/brankdev/avantis-contracts/commit/d625039e301ddc73c2f5b4e2b479b574a4452225

Avantis Smart Contract Security Assessment December 1, 2023

3.8. Partial trades update open-interest incorrectly

Target TradingStorage

Category CodingMistakes Severity High

Likelihood High Impact High

Description

The function registerPartialTrade is used by _unregisterTrade to register a partial trade in
case the collateral to be withdrawn is less than the initial position of the trade. When this partial
trade is registered, the open interest is updatedusing the function _updateOpenInterestUSDC in
registerPartialTrade as shown below:

function registerPartialTrade(
address trader,
uint pairIndex,
uint index,
uint _amountReduced

) external override onlyTrading {
Trade storage t = _openTrades[trader][pairIndex][index];
TradeInfo storage i = _openTradesInfo[trader][pairIndex][index];
if (t.leverage == 0) {

return;
}
t.initialPosToken -= _amountReduced;
i.openInterestUSDC -= _amountReduced.mul(t.leverage);
_updateOpenInterestUSDC(trader, pairIndex, i.openInterestUSDC,

false, t.buy, t.openPrice);
}

function _updateOpenInterestUSDC(
address _trader,
uint _pairIndex,
uint _leveragedPosUSDC,
bool _open,
bool _long,
uint _price

) private {
uint index = _long ? 0 : 1;
uint[2] storage o = openInterestUSDC[_pairIndex];

// Fix beacuse of Dust during partial close

Zellic © 2023 ← Back to Contents Page 31 of 117

Avantis Smart Contract Security Assessment December 1, 2023

if (!_open) _leveragedPosUSDC =
_leveragedPosUSDC > o[index] ? o[index] : _leveragedPosUSDC;

o[index] = _open ?
o[index] + _leveragedPosUSDC : o[index] - _leveragedPosUSDC;

totalOI = _open ?
totalOI + _leveragedPosUSDC : totalOI - _leveragedPosUSDC;

_walletOI[_trader] = _open ?
_walletOI[_trader] + _leveragedPosUSDC :
_walletOI[_trader] - _leveragedPosUSDC;

emit OIUpdated(_open, _long, _pairIndex, _leveragedPosUSDC, _price);
}

Here, the amount of open interest to be reduced should be equal to _amountRe-
duced.mul(t.leverage). But the argument passed to _updateOpenInterestUSDC is
i.openInterestUSDC, which is the original open interestminus the new amount times leverage.

Impact

If the open interest is incorrectly updated, it would lead to incorrect returned values for the loss-
protection tier, utilizationmultiplier, longmultiplier, short multiplier, and rollover fees.

Recommendations

We recommend replacing i.openInterestUSDCwith _amountReduced.mul(t.leverage) in the
third parameter of the call to _updateOpenInterestUSDC.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
cfb288e3 ↗.

Zellic © 2023 ← Back to Contents Page 32 of 117

https://github.com/brankdev/avantis-contracts/commit/cfb288e31ea140f2513dfd1f7a623a2b047bb2ef

Avantis Smart Contract Security Assessment December 1, 2023

3.9. Referrer rebatesmust not decrease totalRewards

Target TradingCallbacks

Category Business Logic Severity High

Likelihood High Impact High

Description

When a trade is opened, if the trader has set their referral code, the referrer would get a rebate.
This rebate is added as rebates in the function applyReferralOpenwhen a trade is opened. Ad-
ditionally, part of the remaining fee, after the rebate, is allocated as rewards in the vaultmanager.

function handleDevGovFees(
address _trader,
uint _pairIndex,
uint _leveragedPositionSize,
bool _usdc,
bool _fullFee,
bool _buy

) external override onlyTrading returns (uint feeAfterRebate) {
//...
feeAfterRebate = applyReferralOpen(_trader, fee,
_leveragedPositionSize);

uint vaultAllocation =
(feeAfterRebate * (100 - _callbacks.vaultFeeP())) / 100;

uint govFees = (feeAfterRebate * _callbacks.vaultFeeP()) / 100 / 2;

if (_usdc) usdc.transfer(address(vaultManager), vaultAllocation);

vaultManager.allocateRewards(vaultAllocation);
//...

}

function applyReferralOpen(
address _trader,
uint _fees,
uint _leveragedPosition

) public override onlyTrading returns (uint) {
(uint traderFeePostDiscount, address referrer, uint referrerRebate) =

referral.traderReferralDiscount(_trader, _fees);

Zellic © 2023 ← Back to Contents Page 33 of 117

Avantis Smart Contract Security Assessment December 1, 2023

if (referrer != address(0)) {
rebates[referrer] += referrerRebate;
emit TradeReferred(

_trader,
referrer,
_leveragedPosition,
traderFeePostDiscount,
_fees - traderFeePostDiscount,
referrerRebate

);
return traderFeePostDiscount - referrerRebate;

}
return _fees;

}

When the trade is closed, the function applyReferralClose returns the referrerRebate, which
is thensubtracted fromtotalRewards in the functionsendReferrerRebateToStorageasshown:

function _unregisterTrade(
ITradingStorage.Trade memory _trade,
int _percentProfit,
uint _collateral,
uint _feeAmountToken, // executor reward
uint _lpFeeToken,
uint _tier

) private returns (uint usdcSentToTrader) {
//Scoping Local Variables to avoid stack too deep
uint totalFees;
{

(uint feeAfterRebate, uint referrerRebate) =
storageT.applyReferralClose(

_trade.trader,
_lpFeeToken,
_trade.initialPosToken.mul(_trade.leverage)

);

//...
if (referrerRebate > 0) {

storageT.vaultManager()
.sendReferrerRebateToStorage(referrerRebate);

}
}

}

Zellic © 2023 ← Back to Contents Page 34 of 117

Avantis Smart Contract Security Assessment December 1, 2023

function sendReferrerRebateToStorage(uint _amount)
external override onlyCallbacks {

require(_amount > 0, "NO_REWARDS_ALLOCATED");
require(totalRewards >= _amount, "UNDERFLOW_DETECTED");

totalRewards -= _amount;
IERC20(junior.asset()).transfer(address(storageT), _amount);

emit ReferralRebateAwarded(_amount);
}

As the rewards do not include the referral rebate amount, these should not be subtracted from
totalRewards.

Impact

The totalRewards distributedwill be less than the total rewards available in the vault manager.

Recommendations

We recommend not subtracting the referral rebate from totalRewards.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
6e335dc2 ↗.

Zellic © 2023 ← Back to Contents Page 35 of 117

https://github.com/brankdev/avantis-contracts/commit/6e335dc284c4c4e7cb698906db96221931b76331

Avantis Smart Contract Security Assessment December 1, 2023

3.10. Precision loss in totalLockPoints causes undue rewards and insolvency

Target VeTranche

Category CodingMistakes Severity High

Likelihood Low Impact High

Description

InVeTranche,totalLockPointscounts the total share lockpointsofall the lockedpositionsand is
thedenominator that divides all rewarddistributions tomake sure all locks get the samequantity
of reward per share per lockpoint. However, compared to the actual lockpoints, it hasmuch less
precision due to being divided by _PRECISION:

function lock(uint256 shares, uint endTime)
public nonReentrant returns (uint256) {

//...
lockMultiplierByTokenId[nextTokenId] =

getLockPoints(endTime - block.timestamp);
totalLockPoints +=

(shares * lockMultiplierByTokenId[nextTokenId]) / _PRECISION;

This matters because the lock can be set for any number of shares and days, so the granularity
with which the user has control over lockMultiplierByTokenId for a given token is much finer
than _PRECISION:

function getLockPoints(uint256 timeLocked)
public view override returns (uint256) {

uint256 lockedDays = timeLocked > getMinLockTime() ?
(timeLocked - getMinLockTime()) / 86400 : 0;

uint256 points = _PRECISION +
(((lockedDays ** 2) * multiplierCoeff * _PRECISION)

/ multiplierDenom);
return points;

}

For example, assuming the default parameters of multiplierCoeff = 1815e5 and multipli-
erDenom = 1960230 * _PRECISION, if a user locks one share for exactly 103 daysmore than the
minimum, then pointswill be about 1.9823 * _PRECISION. After that is divided by _PRECISION,
it rounds down to one.

Zellic © 2023 ← Back to Contents Page 36 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Impact

Users wishing to lock shares can get more rewards than they are due if they tailor shares and
timeLocked to takemaximum benefit from this rounding.

In the most extreme case, if the user locks one share at a time for 103 days past the minimum
amount of time, they get approximately twice the share than they are entitled to.

Extra USDC given out due to this precision loss causes reward insolvency, where the balance of
VeTranche is less than the total outstanding rewards, which causes the last few unlockers to not
be able to unlock because the VeTranche runs out of USDC.

See this POC output:

Start
- totalLockPoints = 0
- LP 1 reward = 0
- LP 2 reward = 0
LP 1 locks 100 shares
- totalLockPoints = 198
- LP 1 reward = 0
- LP 2 reward = 0
LP 2 locks 100x 1 share
- totalLockPoints = 298
- LP 1 reward = 0
- LP 2 reward = 0
Distribute 1e10 rewards to VeTranche
LP 2 unlocks 100x
- totalLockPoints = 198
- LP 1 reward = 0
- LP 2 reward = 6652010000
LP 1 tries to unlock
[FAIL. Reason: ERC20: transfer amount exceeds balance]

LP 1 and LP 2 both lock 100 shares in total, for the same amount of time, so they should both get
half of the 1e10WEI=$10,000 total rewarddistributedwhile theywere locked, $5,000each. How-
ever, when LP 1 locked their shares, totalLockPoints increased by 198, and when LP 2 locked
their shares, since they did one share at a time, totalLockPoints only increased by 100.

So, when the rewards are distributed, the denominator ismuch lower than it is supposed to be—
298 insteadof 396. Then,whenLP2unlocks all their shares, theyget $6,652.01 insteadof $5,000
- 2/3 of the reward instead of half.

Later, when LP 1 tries to unlock their shares, the logic also tries to send them 2/3 of the reward
but fails due to insufficient funds, since only 1/3 of the reward is actually left.

Zellic © 2023 ← Back to Contents Page 37 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Recommendations

Track the total lockpointswith the same precision as each individual NFT’s lockpoints to prevent
precision loss. Verify that, after remediation, nothing can violate the invariant that the sum of all
lockpoints across all lock NFTs is equal to totalLockPoints.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
9c5865d3 ↗.

Zellic © 2023 ← Back to Contents Page 38 of 117

https://github.com/brankdev/avantis-contracts/commit/9c5865d3d174ed1bb3cad47b15097372c26108db

Avantis Smart Contract Security Assessment December 1, 2023

3.11. Wrong reserve ratio returned by getReserveRatiowhen constrained

Target VaultManager

Category CodingMistakes Severity High

Likelihood High Impact High

Description

Thepublic view function getReserveRatiodetermines, for a given reserve amount, what ratio to
reserve between the junior and senior vaults. This is the target reserve ratio if the target reserve
ratio results in a split that is reservable. Otherwise, it is the current reserve ratio:

function getReserveRatio(uint _reserveAmount)
public view returns (uint256) {

if (_reserveAmount > 0) {
uint currentReserveRatio = getCurrentReserveRatio();
if (

!_isNormalLiquidityMode(currentReserveRatio) ||
!junior.hasLiquidity(

(_reserveAmount * targetReserveRatio) / 100) ||
!senior.hasLiquidity(

(_reserveAmount * targetReserveRatio) / 100)
) {

// constrained Liquidity Mode
return currentReserveRatio;

}
}
return targetReserveRatio;

}

However, there are two things wrong with this function. The first is that the call to se-
nior.hasLiquidity should use _reserveAmount - (_reserveAmount * targetReserveRatio
/ 100) insteadof the sameparameter to junior.hasLiquiditybecausewewant to check if the
senior tranche has the liquidity for the rest of the assets.

The second is that there is no guarantee that the current reserve ratio returned by getCurren-
tReserveRatio() is a split that allows the reservation of that amount of assets. The reserve ratio
this returns is just the proportion of assets, whether they are reserved or not:

function getCurrentReserveRatio() public view returns (uint256) {
IERC20 asset = IERC20(junior.asset());

Zellic © 2023 ← Back to Contents Page 39 of 117

Avantis Smart Contract Security Assessment December 1, 2023

if (asset.balanceOf(address(senior)) == 0 &&
asset.balanceOf(address(junior)) == 0) {
return targetReserveRatio;

}
return

(100 * asset.balanceOf(address(junior))) /
(asset.balanceOf(address(junior)) +

asset.balanceOf(address(senior)));
}

So, forexample, if the juniorandsenior vaultshave thesameamountofassets, but all of the junior
is reserved and none of the senior is reserved, thiswill return 50%,which causes the reservation
to fail. If it had returned 0% instead, the reservation would succeed, which it should because
there are enough assets in the vaults to back the reservation.

Impact

Opening trades can unexpectedly revert in reserveBalance even if there should be enough liq-
uidity to reserve the required balance.

A front-runner looking to cancel a trade open transaction by sandwiching it needs much less
collateral to do so.

Recommendations

For the first issue, fix the coding mistake to correctly check if the reserved amount requires the
constrained liquidity mode.

For the second issue, instead of using the current reserve ratio as the reserve ratio, the quantity
that should be used is the current ratio of unreserved funds between the two tranches.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and fixes were implemented in the fol-
lowing commits:

• b5416aea ↗
• 9dce46f8 ↗

Zellic © 2023 ← Back to Contents Page 40 of 117

https://github.com/brankdev/avantis-contracts/commit/b5416aeaae000559984a7f802c085511b7e25e5b
https://github.com/brankdev/avantis-contracts/commit/9dce46f868fd376a412f9d0ece70bb5d7deec027

Avantis Smart Contract Security Assessment December 1, 2023

3.12. Loss-protection tier is reduced for trades that greatly reduce skew

Target PairInfos

Category Business Logic Severity High

Likelihood High Impact High

Description

The loss-protection–tier feature is intended to incentivize traders to submit trades that reduce
the current skew, which are trades that inverse the net-demand position of the protocol. How-
ever, when a trade is opened, the loss-protection tier is calculated based on the skew after the
trade’s open interest is applied to the total:

function lossProtectionTier(ITradingStorage.Trade memory _trade)
external view override returns (uint) {

uint openInterestUSDCLong =
storageT.openInterestUSDC(_trade.pairIndex, 0);

uint openInterestUSDCShort =
storageT.openInterestUSDC(_trade.pairIndex, 1);

uint updatedInterest = _trade.initialPosToken.mul(_trade.leverage);

if (!_trade.buy) {
openInterestUSDCShort += updatedInterest;
uint openInterestUSDCLongPct = (100 * openInterestUSDCLong) /

(openInterestUSDCLong + openInterestUSDCShort);
//...snipped loop checks openInterestUSDCLongPct vs longSkewConfig

} else {
openInterestUSDCLong += updatedInterest;
uint openInterestUSDCShortPct = (100 * openInterestUSDCShort) /

(openInterestUSDCLong + openInterestUSDCShort);
//...snipped loop checks openInterestUSDCShortPct vs shortSkewConfig

}
return 0; // No Protection Tier

}

For both long and short opens (buys and sells, respectively), the updatedInterest is added to
the open interest before calculating the skew.

Zellic © 2023 ← Back to Contents Page 41 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Impact

This means that a trade that corrects enough skew to move the skew config to a lesser tier will
get a lesser degree of loss protection, which is an unexpected result. In the extreme case, if a
trader corrects the entire skew with a large transaction, they will get no loss protection. This is
counterintuitive to the purpose of the loss-protection feature.

Recommendations

Since loss-protection tiers are a staircase-shaped function, if a trade causes the total open in-
terest to span multiple skew config values, the area under the curve needs to be calculated to
determine the total incentive the trader should get. However, currently this incentive is tiered so
the trade cannot be awarded half of a tier, so that does not map cleanly.

When we brought up this finding with Avantis, we also noted other concerns with the loss-
protection tier feature even when it is working as intended. For example, since loss protection
stays with the trade, if a trader creates a trade that is awarded loss protection, and then the pro-
tocol skew changes direction, the trader can add any amount of funds to the existing trade using
amargin update. This effectively causes the added position to also benefit from the loss protec-
tion despite worsening the skew. Also, it is possible to place a temporary trade with a flash loan
to intentionally skew the protocol first, before an actual trade is placed, to essentially “buy” loss
protection for a fee.

In light of this finding and the other concerns, we recommend rethinking how loss-protection
tiers should work to incentivize traders to reduce skew.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
dfc3241f ↗. This commit adds a per-block open interest limit in order to prevent the use of flash
loans to exploit this.

Zellic © 2023 ← Back to Contents Page 42 of 117

https://github.com/brankdev/avantis-contracts/commit/dfc3241f9fb91be8ba03ec06a9213542593e000a

Avantis Smart Contract Security Assessment December 1, 2023

3.13. Tranche trading inflow ismuch less than outflow in zero skew

Target TradingCallbacks

Category Business Logic Severity High

Likelihood High Impact High

Description

When a trade is closed at a loss in _unregisterTrade, the collateral that is lost is allocated as a
reward:

if (pnl < 0) {
storageT.vaultManager().allocateRewards(

uint(-pnl) + totalFees - _feeAmountToken);
}

When a reward is allocated, it is divided between Tranche and VeTranche depending on the
amount of locked assets. This seems safe because the expectation is that the reward is not
needed in the future — it becomes profit to the LPs.

However, the inflowof funds due to losing trades is actually needed to offset the outflowof funds
due to other winning trades. So, this inflow cannot be considered a reward.

Ideally, across the entire protocol, there should be a high volume of trades, and for each asset
the total leveraged long position should equal the total leveraged short position across all the
open positions (zero skew). If this is the case, then when the price changes, the large inflow of
collateral due to the losing trades is roughly equal inmagnitude to the large outflow of collateral
due to the winning trades.

Therefore, if the inflow is routed both to Tranche and VeTranche, and the outflow that matches
the inflow in size is taken only from Tranche, Tranche will quickly run out of money as more and
moremoney gets stuck in the VeTranche rewards.

Impact

In the ideal case where there is high volume and zero skew, when inflow and outflow of USDC
is averaged over all the trades in the system, Tranche will quickly run out of money. This causes
traders to be unable to open new trades and LPs who do not lock their shares to lose money to
LPs that do lock their shares.

Zellic © 2023 ← Back to Contents Page 43 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Recommendations

Instead of allocating the proceeds obtained from losing positions as rewards, send them only to
Tranchewith the expectation that other winning positions will need themwhen they close.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
36126985 ↗.

Zellic © 2023 ← Back to Contents Page 44 of 117

https://github.com/brankdev/avantis-contracts/commit/36126985f419c99f5f447c9b009ed000b4694597

Avantis Smart Contract Security Assessment December 1, 2023

3.14. Arbitrage opportunities with older price feeds

Target PriceAggregator

Category Business Logic Severity Medium

Likelihood Medium Impact Medium

Description

The protocol uses Pyth oracles to obtain the prices of the tokens. When opening, modifying, or
closinga trade, theusermust supplyapriceUpdateDatablob,which isobtained fromandsigned
by the off-chain Pyth oracle.

In PriceAggregator.fulfill, this data is then passed to the on-chain Pyth contract us-
ing Pyth.updatePriceFeeds to update the price before the updated price is fetched using
Pyth.getPrice, and then that price is used for the order.

Since the priceUpdateData blob is taken from user input, it could be old price data or the price
data for a different price feed. In this case, the update will be rejected by Pyth, which means
getPricewill return the latestprice theon-chainPythcontracthasseen,which isnotnecessarily
themost recent price that exists.

If we assume that this price is not too stale (it is <2minutes old) but is also not equal to themost
recent price, an arbitrage opportunity exists because the user can place orders under the old
price while already knowingwhat the next price is going to be.

Impact

At times of high volatility (high when leverage is considered), this arbitrage opportunity is worth
the fees and can be done inside a single transaction, allowing for risk-free arbitrage.

For example, let’s say an asset is relatively stable, so its maximum leverage is set to 100x, and
then volatility causes its price to increaseby0.1% in one tick. If a user notices that thePyth oracle
has not yet seen the new price, they can take out a flash loan and then call openTrade to open a
long position atmaximum leverage using a stale or incorrect priceUpdateData. This causes the
old price to be used. Then, they can provide the new priceUpdateData and immediately close
the trade in the same transaction, letting them book an instant and risk-free profit of 10% of the
value of the flash loan.

Recommendations

The issue at hand is challenging to rectify within the constraints of the current contract-trader
interface due to the following reasons:

Zellic © 2023 ← Back to Contents Page 45 of 117

Avantis Smart Contract Security Assessment December 1, 2023

1. Taking priceUpdateData from traders is not safe as traders are always able to refuse
to give newer data that they nonetheless already have, until a later call in the same
block or transaction.

2. If the responsibility for providing priceUpdateData is shifted to governance, it would
have to call this function at the update frequency of the underlying price feed, likely
many times per block for every pair.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and fixes were implemented in the fol-
lowing commits:

• c3a43939 ↗
• dc29a740 ↗

Avantis acknowledges the risk of using user-supplied price update data in margin update and
limit execution orders, since feasible exploitation of these arbitrage opportunities will require
the payment ofmargin fees on the leveragedposition until the price jumps sufficiently, so it is not
risk-free.

Zellic © 2023 ← Back to Contents Page 46 of 117

https://github.com/brankdev/avantis-contracts/commit/c3a439395890bb447f9ec176c2e4040c93615007
https://github.com/brankdev/avantis-contracts/commit/dc29a740d79fa77c52229c358b9fcae8e5d08d01

Avantis Smart Contract Security Assessment December 1, 2023

3.15. The useBackupOnlymode allows unduemargin update withdrawals

Target TradingCallbacks

Category Business Logic Severity Medium

Likelihood Medium Impact Medium

Description

The function updateMarginallowsusers todeposit orwithdrawUSDC from their openpositions.
When the function iscalled towithdrawUSDC, it first verifies if thenew leverage lies in thecorrect
range, and then, if it does, passes control to the fulfill function in PriceAggregator.

If the valueofuseBackupOnly is set totrue inPriceAggregator, the valueofpricewouldbe zero
and it will be pushed to the answers array. This function would then call the callback function
updateMarginCallbackwith the a.price value as zero.

function updateMarginCallback(
AggregatorAnswer memory a

) external override onlyPriceAggregator {
//...

int profitP = _currentPercentProfit(_trade.openPrice,
a.price, _trade.buy, _trade.leverage);

int pnl = (int(_trade.initialPosToken) * profitP)
/ int(_PRECISION) / 100;

if (pnl < 0) {
pnl = (

pnl * int(
aggregator.pairsStorage()
.lossProtectionMultiplier(_trade.pairIndex, o.tier)

)
) / 100;

}
require((int(_trade.initialPosToken) + pnl) >

(int(_trade.initialPosToken) *
int(100 - _WITHDRAW_THRESHOLD_P))

/ 100, "WITHDRAW_THRES_BREACHED");
}
storageT.vaultManager().sendUSDCToTrader(_trade.trader, o.amount);
//...

}

Zellic © 2023 ← Back to Contents Page 47 of 117

Avantis Smart Contract Security Assessment December 1, 2023

function _currentPercentProfit(
uint openPrice,
uint currentPrice,
bool buy,
uint leverage

) private returns (int p) {
int diff = buy ?

(int(currentPrice) - int(openPrice)) :
(int(openPrice) - int(currentPrice));

int minPnlP = int(_PRECISION) * (-100);
int maxPnlP = int(_MAX_GAIN_P) * int(_PRECISION);
p = (diff * 100 * int(_PRECISION.mul(leverage))) / int(openPrice);
p = p < minPnlP ? minPnlP : p > maxPnlP ? maxPnlP : p;

}

If the original trade was a short trade, the returned value of profitP would be 100 *
int(_PRECISION.mul(leverage)) (max capped to 900%). Therefore, even if the real price is
higher (which means the short suffered a loss), the trader can still withdraw their tokens as if
the price actually hit zero.

Impact

Users canwithdrawmuchmore tokens from their position than they should be allowed to.

Recommendations

Theother callback functions delete the pending order and returnwithoutmaking any changes in
the trades if the value of a.price is zero. The same check here would prevent this issue.

Alternatively, if Finding 3.23. ↗ is resolved bymaking cancelled orders revert, consider reverting
in PriceAggregator instead of calling any callbackswhen the price is set to zero because it is not
valid.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
a445138c ↗.

Zellic © 2023 ← Back to Contents Page 48 of 117

https://github.com/brankdev/avantis-contracts/commit/a445138c2f519a6c75b8d23fbc9005f2d98475d7

Avantis Smart Contract Security Assessment December 1, 2023

3.16. The applyReferralClose function returns fee with referrer rebate

Target TradingStorage

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

When a trade is being closed, the function _unregisterTrade is called to unregister the trade.
The function calls applyReferralClose to calculate the referrerRebate and feeAfterRebate.
The issue here is that feeAfterRebate includes the referrer rebate too.

The functionapplyReferralClose is responsible tocalculatefeeAfterRebateandreferrerRe-
bate.

function applyReferralClose(
address _trader,
uint _fees,
uint _leveragedPosition

) public override onlyTrading returns (uint, uint) {
(uint traderFeePostDiscount, address referrer, uint referrerRebate) =

referral.traderReferralDiscount(_trader, _fees);

if (referrer != address(0)) {
rebates[referrer] += referrerRebate;
emit TradeReferred(

_trader,
referrer,
_leveragedPosition,
traderFeePostDiscount,
_fees - traderFeePostDiscount,
referrerRebate

);
return (traderFeePostDiscount, referrerRebate);

}
return (_fees, referrerRebate);

}

Here the value traderFeePostDiscount includes the referrerRebate, which should be sub-
tracted from it before it is returned.

Zellic © 2023 ← Back to Contents Page 49 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Impact

The feeAfterRebate is used to allocate rewards using the vaultmanager. If the referrerRebate
is not subtracted from it, more rewards would be allocated as compared to what is available.

Recommendations

Subtract referrerRebate from traderFeePostDiscount before returning the value in applyRe-
ferralClose.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
bd5cb1f1 ↗.

Zellic © 2023 ← Back to Contents Page 50 of 117

https://github.com/brankdev/avantis-contracts/commit/bd5cb1f1fc3ca606610543392c26b176ec9863b1

Avantis Smart Contract Security Assessment December 1, 2023

3.17. Bot latencymay prevent execution of limit-close orders

Target TradingCallbacks

Category CodeMaturity Severity High

Likelihood Low Impact Medium

Description

When a limit-close order is executed via executeLimitOrder, the callback function checks if the
current price (a.price) is in the correct range depending on the type of the limit order.

function executeLimitCloseOrderCallback(AggregatorAnswer memory a)
external override onlyPriceAggregator {

//...
if (o.orderType == ITradingStorage.LimitOrder.LIQ) {

uint liqPrice = pairInfos.getTradeLiquidationPrice(
t.trader,
t.pairIndex,
t.index,
t.openPrice,
t.buy,
v.posUSDC,
t.leverage

);
v.reward = (t.buy ? a.price <= liqPrice : a.price >= liqPrice) ?

(v.posToken * liqFeeP) / 100 : 0;
} else {

v.reward = (o.orderType == ITradingStorage.LimitOrder.TP &&
t.tp > 0 &&
(t.buy ? a.price >= t.tp : a.price <= t.tp)) ||
(o.orderType == ITradingStorage.LimitOrder.SL &&

t.sl > 0 &&
(t.buy ? a.price <= t.sl : a.price >= t.sl))

? (
v.posToken.mul(t.leverage) *
aggregator.pairsStorage().pairLimitOrderFeeP(t.pairIndex)

) / 100 / _PRECISION
: 0;

}
//...

}

Zellic © 2023 ← Back to Contents Page 51 of 117

Avantis Smart Contract Security Assessment December 1, 2023

It might be possible that the bot executes the limit-close order with a minor delay, during which
the price falls out of the correct range and the order is not executed.

For example, for a stop loss tobe triggered, the stop loss should begreater than the current price
if the order is a buy order. The bot verifies the price at every block, and if it finds an order where
stop loss is greater than the current price, it executes a limit close on that trade. But due to some
latency in the bot, it might be possible that it calls the executeLimitOrder at the time the price
goes above the stop loss — due to which, it will not be triggered.

Impact

Limit-close orders might not be executed in case of bot latency. In the worst case scenario, it
means that stop loss, take profits, and liquidation will not be executed.

Recommendations

We recommend tracking the highs and lows between the time an order is placed (or the SL/TP
is updated) until the time the executeLimitOrder is called, and only execute the order if the
liqPrice / t.tp / t.sl (depending on the type of order) falls in between that range.

Remediation

This issue has been acknowledged by Avantis Labs, Inc.. Avantis plans to remediate this issue
throughmore robust backend infrastructure for liquidation bots.

Zellic © 2023 ← Back to Contents Page 52 of 117

Avantis Smart Contract Security Assessment December 1, 2023

3.18. Referrer-code transfers overwrite recipient codes andmisalign tiers

Target Referral

Category Business Logic Severity Medium

Likelihood High Impact Medium

Description

The function setCodeOwner allows an account that owns a referral code to transfer that code to
another account:

function setCodeOwner(bytes32 _code, address _newAccount) external {
require(_code != bytes32(0), "ReferralStorage: invalid _code");

address account = codeOwners[_code];
require(msg.sender == account, "ReferralStorage: forbidden");

codeOwners[_code] = _newAccount;

delete codes[account];
codes[_newAccount] = _code;

emit SetCodeOwner(msg.sender, _newAccount, _code);
}

However, _newAccountmay already have a code ormay not want to receive the code.

Additionally, the transfer process does not update the referrer tier of the sender or recipient, so
if the recipient did not have a code, they will stay at tier zero due to the uninitialized field rather
than being set to tier one. And either way, the sender will keep their tier, despite having given
away the code, until they register another code.

Impact

Anyone can overwrite anyone else’s referrer code in the codes mapping to their own referrer
code.

Also, tiers and referral codes will become out of sync upon a transfer.

Zellic © 2023 ← Back to Contents Page 53 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Recommendations

Rework the code-transfer process to include a step where the recipient affirms the transfer be-
fore it actually takes place. Also, have the code-transfer process transfer the tier or associate
tiers with referrer accounts instead of codes.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and fixes were implemented in the fol-
lowing commits:

• 0524a688 ↗
• 73c26d9a ↗

Zellic © 2023 ← Back to Contents Page 54 of 117

https://github.com/brankdev/avantis-contracts/commit/0524a688a32bf29137591837c68796da10d915ba
https://github.com/brankdev/avantis-contracts/commit/73c26d9a739ae263b8219bc6b42d13b3d074d6bd

Avantis Smart Contract Security Assessment December 1, 2023

3.19. Delayed force unlock causes reward insolvency

Target VeTranche

Category Business Logic Severity High

Likelihood Low Impact Medium

Description

Keeper bots are responsible for calling forceUnlock in order to unlock expired lock positions
after their lock timehaspassed. However, ifforceUnlock isnotcalledonanexpired lockposition,
it continues earning rewards.

Impact

If the keeperbot fails toforceUnlockanexpiredpositionanda rewardsdistributionhappens, the
expired position will accrue undue rewards.

Recommendations

Tofix this on chainwhile keeping constant-time rewards allocations anddistributions, the cumu-
lative rewards-per-sharepoint valuecanbesaved inanarray insteadofanupdatedstatevariable,
alongside the timeof the rewardsdistribution. Then, unlockcancheck if a rewarddistributionhas
happened since the lock expired — if it did, then either binary search for the value at expiration
time or require that the user supply it as a parameter.

Remediation

This issue has been acknowledged by Avantis Labs, Inc.. Avantis remediated this issue by en-
suring that the unlock bots have reasonably low latency.

Zellic © 2023 ← Back to Contents Page 55 of 117

Avantis Smart Contract Security Assessment December 1, 2023

3.20. Price impact is not tracked cumulatively

Target PairInfos

Category Protocol Risks Severity Medium

Likelihood High Impact Medium

Description

Theprice impact of a trade is calculated ingetTradePriceImpactwhichcallsgetTradePriceIm-
pactPure:

function getTradePriceImpact(
uint openPrice,
uint pairIndex,
bool long,
uint tradeOpenInterest

) external view override
returns (uint priceImpactP, uint priceAfterImpact) {

(priceImpactP, priceAfterImpact) = getTradePriceImpactPure(
openPrice,
long,
tradeOpenInterest,
long ? pairParams[pairIndex].onePercentDepthAbove :

pairParams[pairIndex].onePercentDepthBelow
);

}

function getTradePriceImpactPure(
uint openPrice,
bool long,
uint tradeOpenInterest,
uint onePercentDepth

) public pure returns (uint priceImpactP, uint priceAfterImpact) {
if (onePercentDepth == 0) {

return (0, openPrice);
}

priceImpactP = (tradeOpenInterest * _PRECISION) / onePercentDepth;
uint priceImpact = (priceImpactP * openPrice) / _PRECISION / 100;
priceAfterImpact = long ? openPrice + priceImpact :

openPrice - priceImpact;
}

Zellic © 2023 ← Back to Contents Page 56 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Theprice impact is calculatedbasedonlyon thePythpriceopenPriceand thesizeof theposition
being opened tradeOpenInterest. Using these parameters, the price impact is approximated
linearly using a governance-set one percent depth above or below parameter.

Impact

Since the price impact is not cumulative across multiple successive trades, instead of placing
one large trade with large price impact, a trader should instead split it up into multiple smaller
trades. Allowing a sophisticated trader to experience a much lower price impact by splitting up
their trade adds considerable risk because the price impact is then cumulatively not correctly
modeled.

Recommendations

Cumulatively track the price impact, resetting it after a new price is obtained from the oracle so
that there is little or no benefit to splitting up a trade into smaller trades.

Remediation

This issue has been acknowledged by Avantis Labs, Inc.. Avantis is changing the price impact
formulation as per their ongoing economicmodelling.

Zellic © 2023 ← Back to Contents Page 57 of 117

Avantis Smart Contract Security Assessment December 1, 2023

3.21. Loss protection reduces the -100% cap on losses

Target TradingCallbacks

Category Business Logic Severity Medium

Likelihood High Impact Medium

Description

When a trade is closed, _currentPercentProfit is called to get the percent profit:

function _currentPercentProfit(
uint openPrice,
uint currentPrice,
bool buy,
uint leverage

) private pure returns (int p) {
int diff = buy ? (int(currentPrice) - int(openPrice))

: (int(openPrice) - int(currentPrice));
int minPnlP = int(_PRECISION) * (-100);
int maxPnlP = int(_MAX_GAIN_P) * int(_PRECISION);
p = (diff * 100 * int(_PRECISION.mul(leverage))) / int(openPrice);
p = p < minPnlP ? minPnlP : p > maxPnlP ? maxPnlP : p;

}

Note that the minimum this can return is -100%. Then, the return value is passed as _percent-
Profit to _unregisterTrade, which calls PairInfos.getTradeValue, which fetches the actual
loss-protection percentage and then calls getTradeValuePure:

function getTradeValuePure(
uint collateral,
int percentProfit,
uint rolloverFee,
uint closingFee,
uint lossProtection

) public pure returns (uint, int, uint) {
int pnl = (int(collateral) * percentProfit) / int(_PRECISION) / 100;
if (pnl < 0) {

pnl = (pnl * int(lossProtection)) / 100;
}
int fees = int(rolloverFee) + int(closingFee);
int value = int(collateral) + pnl - fees;

Zellic © 2023 ← Back to Contents Page 58 of 117

Avantis Smart Contract Security Assessment December 1, 2023

if (value <= (int(collateral) * int(100 - _LIQ_THRESHOLD_P)) / 100) {
value = 0;

}
return (value > 0 ? uint(value) : 0, pnl, uint(fees));

}

So, the loss protection is applied after the -100%minimum.

Impact

A trade with a loss-protection tier has a cap on the amount of loss that is greater than complete
loss. Thismeans that the trader will always get back an amount, nomatter howmuch their posi-
tion loses.

Recommendations

Insteadof constraining the loss to -100% in_currentPercentProfit, consider handling thecase
of unlimited losses in a higher-level function so that it is aware of the loss-protection tier.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and fixes were implemented in the fol-
lowing commits:

• 5399494a ↗
• 21e210ea ↗

Zellic © 2023 ← Back to Contents Page 59 of 117

https://github.com/brankdev/avantis-contracts/commit/5399494a684330ca23ff8b893e92fb55cfd1828b
https://github.com/brankdev/avantis-contracts/commit/21e210ea352621319ebac0f0d1a47733b21df243

Avantis Smart Contract Security Assessment December 1, 2023

3.22. Variable reuse causes totalPrincipalDepositedmiscalculation

Target Tranche

Category CodingMistakes Severity Low

Likelihood High Impact Low

Description

The function _updateNegativePrincipal is an internal function used to update principal de-
posits during withdrawals or transfers. The value of principalAssetDiff is first calculated us-
ing the amount of shares that are to be removed. Then principalAssetsDeposited[user] and
totalPrincipalDeposited is decreased, as shown below:

function _updateNegativePrincipal(address user, uint256 shares) internal {
uint256 principalAssetDiff =

(shares * principalAssetsDeposited[user])
/ principalSharesDeposited[user];

principalAssetsDeposited[user] -=
principalAssetDiff < principalAssetsDeposited[user] ?
principalAssetDiff : principalAssetsDeposited[user];

totalPrincipalDeposited -=
principalAssetDiff < principalAssetsDeposited[user] ?
principalAssetDiff : principalAssetsDeposited[user];

principalSharesDeposited[user] -= shares;
}

Here, the value of principalAssetsDeposited[user] and totalPrincipalDeposited are sup-
posed to bedecreasedby the sameamount. As the value of principalAssetsDeposited[user]
is updated first, this updated value will be used to decrease the value of totalPrincipalDe-
posited, as opposed to the old value. This would lead to principalAssetsDeposited[user]
and totalPrincipalDeposited decreased by different amounts.

Impact

The variable totalPrincipalDeposited is used to keep track of total deposited principal and
total earnings, which would be incorrect in this case.

Zellic © 2023 ← Back to Contents Page 60 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Recommendations

The value to be decreased could be stored in a different local variable, and then this value could
be used decrease from both the variables.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
8cf936e9 ↗. The Tranche asset tracking featurewas removed andmoved to off-chain logic.

Zellic © 2023 ← Back to Contents Page 61 of 117

https://github.com/brankdev/avantis-contracts/commit/8cf936e926a193f545022054f52d388030e2be94

Avantis Smart Contract Security Assessment December 1, 2023

3.23. Governance fee chargedwithout market-order placement

Target TradingCallbacks

Category CodeMaturity Severity Low

Likelihood Low Impact Low

Description

Amarket order can be cancelled in the callback for various reasons, including if useBackupOnly
is true, so the value of a.price is zero, the execution price is outside slippage parameters, or the
trade is notwithin exposure limits. In this case, theUSDC is transferred back to the user after the
dev and governance fees are deducted.

Charging the user governance fees in case the backup oracle is used does not seem fair to the
users of the protocol. Additionally, a front-runner can sandwich amarket open on themempool
with a large trade that consumes all of the open interest, causing the market order to be can-
celled. If the back-run side of the sandwich closes the same trade, the price does not change, so
there is no risk to the front-runner — but the fees add to the LP returns.

Impact

Users are charged an unfair fee amount.

Recommendations

We recommend removing this fee when a market order is cancelled and instead return to the
trader all the USDC or revert.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
36126985 ↗.

Zellic © 2023 ← Back to Contents Page 62 of 117

https://github.com/brankdev/avantis-contracts/commit/36126985f419c99f5f447c9b009ed000b4694597

Avantis Smart Contract Security Assessment December 1, 2023

3.24. One account can register multiple referral codes

Target Referral

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The external function registerCode allows any account to register a referral code:

function registerCode(bytes32 _code) external {
require(_code != bytes32(0), "ReferralStorage: invalid _code");
require(codeOwners[_code] == address(0),

"ReferralStorage: code already exists");

codeOwners[_code] = msg.sender;
codes[msg.sender] = _code;
referrerTiers[msg.sender] = _DEFAULT_TIER_ID;

emit RegisterCode(msg.sender, _code);
}

One account should only have one referral code, but this function does not check that the ac-
count does not already have a code registered.

Impact

One account can register multiple referral codes.

Recommendations

Add a check to revert if the account already has a referral code.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
13bb96c4 ↗.

Zellic © 2023 ← Back to Contents Page 63 of 117

https://github.com/brankdev/avantis-contracts/commit/13bb96c462fab3d9189558bb7b70438576c7d96e

Avantis Smart Contract Security Assessment December 1, 2023

3.25. Vault manager withdrawals cannot access the entire junior tranche

Target VaultManager

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

In VaultManager, the internal function _sendUSDCToTrader sends USDC from the vault to the
trader, or, in extremecases (asnotedby thecomment), when thevault runsout from the tranches
to the trader. It is called when the trader is due USDC due tomodifying or closing a position.

function _sendUSDCToTrader(address _trader, uint _amount) internal {
// For the extereme case of totalRewards exceeding vault Manager balance
int256 balanceAvailable =

int(storageT.usdc().balanceOf(address(this))) - int(totalRewards);
if (int(_amount) > balanceAvailable) {

// take difference (losses) from vaults
uint256 difference = uint(int(_amount) - int(balanceAvailable));

uint256 juniorUSDC = (getLossMultiplier() * difference *
getReserveRatio(0)) / 100 / 100;

juniorUSDC = (juniorUSDC > difference) ? difference : juniorUSDC;

uint256 seniorUSDC = difference - juniorUSDC;

junior.withdrawAsVaultManager(juniorUSDC);
senior.withdrawAsVaultManager(seniorUSDC);

}

require(storageT.usdc().transfer(_trader, _amount));
emit USDCSentToTrader(_trader, _amount);

}

When losses need to be taken from the vaults, it calculates juniorUSDC as a proportion of the
difference needed. Note that the call to getLossMultiplier() and getReserveRatio(0) both
return constant percentages, the base multiplier, and the target reserve ratio respectively, so
the ternary that follows is always false. Then, seniorUSDC is the rest of the difference.

However, this logic means that a percentage of the junior tranche is never withdrawn, whereas
all of the senior tranche can bewithdrawn.

Zellic © 2023 ← Back to Contents Page 64 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Impact

Large trade-closing transactions can revert due to insufficient funds in the senior tranche, be-
cause funds reserved in the junior tranche cannot be accessed due to this effect. Additionally,
for larger awards, thismakes the junior tranchesafer than the senior tranche, violatingeconomic
assumptions.

Recommendations

Correctlycalculate theproportionof funds taken from juniorandsenior tranchessuch that the ju-
nior tranche isalwaysmorerisky than thesenior trancheandthecurrentbalancesof the tranches
are considered.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and fixes were implemented in the fol-
lowing commits:

• 874dc022 ↗
• f9342644 ↗

Zellic © 2023 ← Back to Contents Page 65 of 117

https://github.com/brankdev/avantis-contracts/commit/874dc0222c8d242a57ec5d69f783867236c012a5
https://github.com/brankdev/avantis-contracts/commit/f93426448f063fc5c23ef84306625e381349c3af

Avantis Smart Contract Security Assessment December 1, 2023

3.26. The maxRedeem function should comply with ERC-4626

Target Tranche

Category Protocol Risks Severity Low

Likelihood Medium Impact Low

Description

Tranche should be an ERC-4626–compliant contract. In the ERC-4626 specification, the maxRe-
deem function should return the maximum amount of shares that can be redeemed, keeping in
mind all redemption limits.

Oneof the redemption limits that apply towithdrawals is theutilization ratio reserve requirement.
Since maxRedeem is currently not overridden from the underlying ERC-4626 contract, it doesn’t
consider this requirement, and it needs to be aware of this limit to adjust the return value down
if applicable.

Impact

Other contracts or external front-ends expecting ERC-4626 compliance can unexpectedly re-
vert.

Recommendations

Override maxRedeemwith an implementation that considers the reserve ratio requirement.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and fixes were implemented in the fol-
lowing commits:

• 1fcf6cd8 ↗
• f9342644 ↗

Zellic © 2023 ← Back to Contents Page 66 of 117

https://github.com/brankdev/avantis-contracts/commit/1fcf6cd83139686db38b33245e792c9dc2ac253e
https://github.com/brankdev/avantis-contracts/commit/f93426448f063fc5c23ef84306625e381349c3af

Avantis Smart Contract Security Assessment December 1, 2023

3.27. Incorrect access control of setVaultManager causes update lockout

Target VeTranche

Category CodingMistakes Severity Low

Likelihood High Impact Low

Description

The setVaultManager function is used in VeTranche to update the address of the vault manager
contract:

function setVaultManager(address _vaultManager) external onlyManager {
require(_vaultManager != address(0), "ADDRESS_INVALID");
vaultManager = IVaultManager(_vaultManager);

}

This function is onlyManager, so it can only be called by the vaultmanager. However, the current
version of the vault manager contract never calls this function.

Impact

The vault manager cannot be updated.

Recommendations

Change this to onlyGov.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
af954df9 ↗.

Zellic © 2023 ← Back to Contents Page 67 of 117

https://github.com/brankdev/avantis-contracts/commit/af954df9fefe1a1db733699b98e0542202e60d79

Avantis Smart Contract Security Assessment December 1, 2023

3.28. Trader contract can bypassmax trades per pair

Target Trading

Category Protocol Risks Severity Low

Likelihood High Impact Low

Description

There is a limit on the number of trades a trader can have open:

require(
storageT.openTradesCount(msg.sender, t.pairIndex) +

storageT.pendingMarketOpenCount(msg.sender, t.pairIndex) +
storageT.openLimitOrdersCount(msg.sender, t.pairIndex) <
storageT.maxTradesPerPair(),

"MAX_TRADES_PER_PAIR"
);

However, this limit can be bypassed by operating from multiple trading accounts or by using a
contract that splits requested trades acrossmultiple deployed proxies.

Impact

This limit can be bypassed for sophisticated traders.

Recommendations

We recommend removing this limit to equalize the playing field between traders using the front-
end and sophisticated traders who deploy contracts to instantiate trades.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
ab1962d7 ↗.

Zellic © 2023 ← Back to Contents Page 68 of 117

https://github.com/brankdev/avantis-contracts/commit/ab1962d7e63e78f462358ee130ecff136a1377ed

Avantis Smart Contract Security Assessment December 1, 2023

3.29. Limit-order timelock is not initialized on open

Target TradingCallbacks

Category CodingMistakes Severity Low

Likelihood High Impact Low

Description

In Trading, the limitOrdersTimelock parameter is intended to prevent changing the take-profit
or stop-loss parameters of a trade too often after they were last changed. This is tracked by the
TradeInfo.tpLastUpdated and TradeInfo.slLastUpdated struct fields, respectively.

However, when this struct is initialized during the creation of a trade in _registerTrade, these
fields, the second and third ones in the constructor, are set to zero:

ITradingStorage.TradeInfo(
_trade.initialPosToken.mul(_trade.leverage),
0,
0,
false,
pairInfos.lossProtectionTier(_trade)

)

Impact

After a limit order is created, the first SL and TP updates can happen at any time, even before the
timelock period has elapsed.

Recommendations

Instead of initializing them to zero, initialize them to block.number.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
5dca8a6d ↗.

Zellic © 2023 ← Back to Contents Page 69 of 117

https://github.com/brankdev/avantis-contracts/commit/5dca8a6d6ac99fb56c4b6895294de9a95a9d41ed

Avantis Smart Contract Security Assessment December 1, 2023

3.30. Partial closes emit incorrect value in TradeReferred event

Target TradingCallbacks

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

When a trade is partially closed, _unregisterTrade calls storageT.applyReferralClose to ap-
ply the referral close:

function _unregisterTrade(
ITradingStorage.Trade memory _trade,
int _percentProfit,
uint _collateral,
uint _feeAmountToken, // executor reward
uint _lpFeeToken,
uint _tier

) private returns (uint usdcSentToTrader) {
//...
(uint feeAfterRebate, uint referrerRebate) =

storageT.applyReferralClose(
_trade.trader,
_lpFeeToken,
_trade.initialPosToken.mul(_trade.leverage)

);

However, the third parameter to applyReferralClose should be the size of the leveraged posi-
tion that was closed, instead of the total leveraged position.

In applyReferralClose, the third parameter is only used in the emitted TradeReferred event.

Impact

The emitted TradeReferred event for a partial close will have an incorrect closed leveraged po-
sition size.

Recommendations

Make this _collateral.mul(_trade.leverage).

Zellic © 2023 ← Back to Contents Page 70 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
f4ef1c84 ↗.

Zellic © 2023 ← Back to Contents Page 71 of 117

https://github.com/brankdev/avantis-contracts/commit/f4ef1c84e5571a769d084b5650acbe1ce11a2617

Avantis Smart Contract Security Assessment December 1, 2023

3.31. Function openTrade lacks incorrect-payment sanity checks

Target Trading

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The function openTrade is called in order toopenbothmarket and limit orders. Openingamarket
order requires paying the Pyth oracle fee in ETH and a valid priceUpdateData. Opening a limit
ordermeans the caller needs to pay an additional _executionFee.

However, for both market and limit orders, the value sent with the transaction is not checked. If
a user accidentally sendsmore value than is needed for the Pyth update or sends any valuewith
a limit transaction, it will be stuck in the contract.

Also, formarketorders, the_executionFeeparameter is still added to theamountofUSDCtrans-
ferred from the user, but then the variable is not used anywhere else, so the funds remain stuck
in the Trading contract.

Impact

User error while calling the openTrade function can cause USDC or ETH to be locked.

Recommendations

Ensure that the value sent with the transaction is correct, whether or not the Pyth oracle is con-
sulted. Ensure that the _executionFee is not taken from the user if they open amarket order, or
revert if it is nonzero on amarket order.

Remediation

The remediation for Finding 3.14. ↗ removed immediately-executing open orders.

Zellic © 2023 ← Back to Contents Page 72 of 117

Avantis Smart Contract Security Assessment December 1, 2023

3.32. Timestamp updated inmemory instead of storage

Target TradingCallbacks

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The callback function (updateSlCallback) used to update the stop loss also updates the
Trade.timestamp value, but this value is currently updated inmemory and not in storage.

function updateSlCallback(AggregatorAnswer memory a)
external override onlyPriceAggregator {

//...

ITradingStorage.Trade memory t =
storageT.openTrades(o.trader, o.pairIndex, o.index);

if (
// ...

) {
storageT.updateSl(o.trader, o.pairIndex, o.index, o.newSl);
t.timestamp = block.timestamp;
emit SlUpdated(a.orderId, o.trader, o.pairIndex,

o.index, o.newSl, block.timestamp);
}

aggregator.unregisterPendingSlOrder(a.orderId);
}

The line t.timestamp = block.timestamp; only writes to memory, and t is not used after that.
This results in no such change of timestamp being stored for that trade.

Impact

The timestampwill not be updated in storage.

Recommendations

We recommend using storage instead of memory so that the timestamp is updated.

Zellic © 2023 ← Back to Contents Page 73 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
20b78585 ↗.

Zellic © 2023 ← Back to Contents Page 74 of 117

https://github.com/brankdev/avantis-contracts/commit/20b78585a5e2e7cb99f622c729d0de3df78a4184

Avantis Smart Contract Security Assessment December 1, 2023

3.33. Withdraw to different receiver imbalances stats

Target Tranche

Category CodingMistakes Severity Informational

Likelihood High Impact Informational

Description

Whenwithdrawing froma Tranche, the ownermay specify a different receiver for thewithdrawn
assets per the ERC-4626 specification. When this happens, the _withdraw internal function
tracks the statistics as follows:

function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares

) internal virtual override {
//...

// use original asset / share ratio and subject the relative asset amount
if (receiver != owner) {

_updateNegativePrincipal(owner, shares);

// gifts are treated as deposits
principalAssetsDeposited[receiver] += (assets - fee) * _PRECISION;
totalPrincipalDeposited += (assets - fee) * _PRECISION;
principalSharesDeposited[receiver] += shares;

} else if (principalSharesDeposited[receiver] > 0) {
_updateNegativePrincipal(receiver, shares);

}
}

However, gifts should not be treated as deposits, since the assets are being withdrawn.

Impact

The principalAssetsDeposited and totalPrincipalDeposited statistics are incorrectly
changed after a withdraw to a receiver different from the owner.

Zellic © 2023 ← Back to Contents Page 75 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Recommendations

Fix this logic to correctly calculate the statistics.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
8cf936e9 ↗. The Tranche statistics were removed.

Zellic © 2023 ← Back to Contents Page 76 of 117

https://github.com/brankdev/avantis-contracts/commit/8cf936e926a193f545022054f52d388030e2be94

Avantis Smart Contract Security Assessment December 1, 2023

3.34. Tranche name hardcodes junior symbol

Target Tranche

Category CodingMistakes Severity Informational

Likelihood High Impact Informational

Description

In the initializer for Tranche, the ERC-20 initializer is calledwith j concatenated onto the name of
the underlying asset:

__ERC20_init_unchained(
string(abi.encodePacked(trancheName,

abi.encodePacked(" Tranche ", ERC20(__asset).name()))),
string(abi.encodePacked("j", ERC20(__asset).symbol()))

);

However, thismeans that both the junior andsenior tranchesusejand then theunderlyingasset
symbol.

Impact

Holders of senior tranche tokensmay bemisled by the incorrect name.

Recommendations

Set the symbol depending on the name of the tranche.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
9e9cfb73 ↗.

Zellic © 2023 ← Back to Contents Page 77 of 117

https://github.com/brankdev/avantis-contracts/commit/9e9cfb732af3bd122d99f77a0f249a2524e2c726

Avantis Smart Contract Security Assessment December 1, 2023

3.35. Function distributeRewards does not need totalLockPoints

Target VeTranche

Category Optimization Severity Informational

Likelihood N/A Impact Informational

Description

The distributeRewards function distributes rewards sent to the VeTranche, and it takes in a
_totalLockPoints parameter that is expected to equal the contract’s totalLockPoints state
parameter. If it ever is not equal to that, then a different amount of rewardswill be distributed af-
ter all shareholders claim rewards, causing either locked funds or insolvency depending on the
direction.

Impact

There is no impact, because the VaultManager always correctly calls getTotalLockPoints() to
get this quantity to pass back into VeTranche.

However, this is a footgun, since if VeTranche is passed a _totalLockPoints that differs from its
state totalLockPoints, it immediately becomes insolvent.

Additionally, it would save gas to have VeTranche read this parameter from its own state, instead
of having the information pass from VeTranche to VaultManager back to VeTranche.

Recommendations

Remove this parameter and use the state variable totalLockPoints in VeTranche wherever the
value is required.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
18b386c5 ↗.

Zellic © 2023 ← Back to Contents Page 78 of 117

https://github.com/brankdev/avantis-contracts/commit/18b386c54ea4059feab12d8f65a84a650ab4b407

Avantis Smart Contract Security Assessment December 1, 2023

3.36. Incorrect ternary operator precedence in limit-open-order callback

Target TradingCallbacks

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

In executeLimitOpenOrderCallback, there is a conditional that determines if the trade suc-
ceeds:

if (
t == IExecute.OpenLimitOrderType.MARKET

? (a.price >= o.minPrice && a.price <= o.maxPrice)
: (

t == IExecute.OpenLimitOrderType.REVERSAL
? (o.buy ? a.price >= o.maxPrice : a.price <= o.minPrice)
: (o.buy ? a.price <= o.maxPrice : a.price >= o.minPrice)

) && _withinExposureLimits(o.trader, o.pairIndex,
o.positionSize.mul(o.leverage))

) {
ITradingStorage.Trade memory finalTrade = _registerTrade(
//...

The _withinExposureLimits check should happen for all order types; however, if t is MARKET,
then it is not executed because the ternary operator ?: has lower precedence than the &&.

Impact

There is no impact currently because the first branch of the ternary is never executed — this is
the limit order callback, so t is never amarket order.

Recommendations

Sincet isnoteveramarketorder in thiscallback,werecommendremoving the ternary toprevent
this code from being reused in an exploitable way.

Zellic © 2023 ← Back to Contents Page 79 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and fixes were implemented in the fol-
lowing commits:

• a6883fac ↗
• 21e210ea ↗

Zellic © 2023 ← Back to Contents Page 80 of 117

https://github.com/brankdev/avantis-contracts/commit/a6883fac0f63aaf18936f00c7e8db8c043bb55c8
https://github.com/brankdev/avantis-contracts/commit/21e210ea352621319ebac0f0d1a47733b21df243

Avantis Smart Contract Security Assessment December 1, 2023

3.37. Unused vault-fee parameter must be zero

Target VaultManager

Category Optimization Severity Informational

Likelihood N/A Impact Informational

Description

The receiveUSDCFromTrader function has a parameter for vault fees in the implementation of
the function:

function _receiveUSDCFromTrader(address _trader, uint _amount,
uint _vaultFee) internal {

storageT.transferUSDC(address(storageT), address(this), _amount);

if (_vaultFee > 0) totalRewards += _vaultFee;
emit USDCReceivedFromTrader(_trader, _amount, _vaultFee);

}

The vault fee is not taken from the user; it is only allocated as a reward. This means that the
function expects the caller to be responsible for transferring the vault fee, which is confusing
because this function is responsible for transferring the collateral itself.

Impact

There is no impact because this function is only ever called with a zero vault fee.

Recommendations

We recommend either removing this parameter altogether or adding it to the amount of USDC
transferred from storage so that future changes are less likely to create issues.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
f8af8cb2 ↗.

Zellic © 2023 ← Back to Contents Page 81 of 117

https://github.com/brankdev/avantis-contracts/commit/f8af8cb260d010fd184ca181f544d29f5c02cfc8

Avantis Smart Contract Security Assessment December 1, 2023

3.38. Execute trigger check never fails due to atomicity

Target Execute

Category Optimization Severity Informational

Likelihood N/A Impact Informational

Description

TheExecutecontractstores theblocknumberand thefirstcaller to triggera limitorder. However,
because transactionsareatomic, there isnochance forasecond trigger tostartbetween thefirst
trigger and its callback.

Impact

InTrading.executeLimitOrder, thecall toexecutor.triggeredwill always return false, and the
registration and unregistration of the first bot to trigger the limit in Execute’s storage is wholly
unnecessary.

Recommendations

Tosavegas, theentireExecutecontractcanbereplacedwith transferring theexecution fee to the
sender in executeLimitOrder aswell as ensuring that the callback either successfully executes
the trigger or reverts.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
aadd8210 ↗.

Zellic © 2023 ← Back to Contents Page 82 of 117

https://github.com/brankdev/avantis-contracts/commit/aadd82109806ec40c6f3007bb982819778d483c3

Avantis Smart Contract Security Assessment December 1, 2023

4. Discussion Thepurpose of this section is to documentmiscellaneous observations thatwemadeduring the
assessment. These discussion notes are not necessarily security related and do not convey that
we are suggesting a code change.

4.1. Referral code incentives aremisaligned

The referral code system allows for a fee discount to be given to traders. However, since all
the referral codes are on chain, if there is any referral code with the best fee discount, profit-
maximizing traders will use that referral code regardless of who actually referred them.

Additionally, the referral codesystemallows for a rebate tobegiven to the referrer. However, this
rebate can be gamed by the referral code owner. If the owner sets up a contract that reimburses
back to the trader the referrer rebates that it gets, minus perhaps a profit margin, they can ask
profit-maximizing traders to use their referral code for themaximum effective discount.

4.2. VeTranche NFT info should be struct

When a VeTranche NFT is minted and shares are locked, parameters are set across a fewmaps,
all keyed by the token ID of the new token:

tokensByTokenId[nextTokenId] = shares;
lockTimeByTokenId[nextTokenId] = endTime;
lockStartTimeByTokenId[nextTokenId] = block.timestamp;
rewardsByTokenId[nextTokenId] = 0;
lockMultiplierByTokenId[nextTokenId] =

getLockPoints(endTime - block.timestamp);

This code would bemore readable and savemore gas (due to saving keccak calls) if these were
instead fields of a struct and if a singlemapping that goes from token ID to the struct stored all of
this information.

4.3. Noway to remove user from Trading whitelist

TheTradingcontract hasa feature towhitelist traders. There is noway to removeauser from this
whitelist though, so if a user needs to be removed, the contract must be upgraded to facilitate
that.

Zellic © 2023 ← Back to Contents Page 83 of 117

Avantis Smart Contract Security Assessment December 1, 2023

4.4. Pyth price can become negative or erratic

Avantis treats the price as an unsigned quantity, but according to the Pyth documentation, the
price is actually signed:

struct Price {
// Price
int64 price;
// Confidence interval around the price
uint64 conf;
// Price exponent
int32 expo;
// Unix timestamp describing when the price was published
uint publishTime;

}

The price of real-world equities is sometimes negative (for example, this happened to the price
of oil in 2021). In the event this actually happens, when cast to an unsigned quantity, Avantis will
instead assume it is very large, causing longs to win when shorts should havewon.

Additionally, whena stock split happens, suchas theTSLAstock split in 2022, thePythprice feed
changes to reflect thenewpriceafteroff-chainnotificationsandannouncements. If thishappens
and the Avantis governance does not notice and step in, many traders will suffer incorrect gain-
s/losses due to the sudden predictable discontinuity in price.

4.5. Tranche has unnecessary ReentrancyGuard

The Tranche contract inherits from ReentrancyGuardUpgradeable, but none of its functions are
markedwith the nonReentrantmodifier, so the base contract is not doing anything.

4.6. Checks-effects-interactions pattern broken

The function claimRebate transfers the USDC to the user before setting rebates to zero.

function claimRebate() external {
usdc.transfer(msg.sender, rebates[msg.sender]);
rebates[msg.sender] = 0;

}

Although this is currently not a security issue, if the protocol decides to use any other token in

Zellic © 2023 ← Back to Contents Page 84 of 117

Avantis Smart Contract Security Assessment December 1, 2023

the future with hooks on transfer, it would be a security risk.

4.7. Typos

Wenoticed several minor typos that do not affect code functionality, but nevertheless should be
fixed.

• In TradingStorage, the parameter to setReferral is _refferal.
• In PairStorage, the gov-only function name is udpateSkewOpenFees.
• In ITradingStorage, updateType is an enum, so it should be capitalized.
• In VeTranche, in the unlock and forceUnlock functions, there is a duplicate delete
lockStartTimeByTokenId[tokenId];.

Zellic © 2023 ← Back to Contents Page 85 of 117

Avantis Smart Contract Security Assessment December 1, 2023

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we ana-
lyzed each function in the contracts and created a written threat model for some critical func-
tions. A threat model documents a given function’s externally controllable inputs and how an
attacker could leverage each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in
this section does not necessarily suggest that a function is safe.

5.1. Module: Execute.sol

Function: claimTokens()

This claims the pending token reward for the caller.

Branches and code coverage

Intended branches

• If the caller has some tokens to claim, transfer these tokens to the caller.
Test coverage

Negative behavior

• Revert if tokensToClaim for msg.sender is zero.
Negative test

Function call analysis

• ICallbacks(this.storageT.callbacks()).transferFromVault(msg.sender,
tokens)

• What is controllable? msg.sender and tokens.
• If the return value is controllable, how is it usedandhowcan it gowrong?
No return values.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

5.2. Module: Referral.sol

Function: registerCode(byte[32] _code)

This registers a referral code for the sender — to be called by referrer.

Zellic © 2023 ← Back to Contents Page 86 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Inputs

• _code
• Control: Fully controlled by caller.
• Constraints: The _code should not be bytes32(0) and codeOwners should
not be already registered.

• Impact: The referral code to register.

Branches and code coverage

Intended branches

• The codeOwners, codes, and referrerTiers is correctly updated.
Test coverage

Negative behavior

• Revert if _code is bytes32(0).
Negative test

• Revert if codeOwners[_code] != address(0).
Negative test

Function call analysis

No external function calls found.

Function: setCodeOwner(byte[32] _code, address _newAccount)

This changes the owner of a referral code— to be called by the code owner.

Inputs

• _code
• Control: Fully controlled by caller.
• Constraints: Must not be an empty code (bytes32(0)).
• Impact: The referral code to change ownership.

• _newAccount
• Control: Fully controlled by caller.
• Constraints: None.
• Impact: The new owner address.

Zellic © 2023 ← Back to Contents Page 87 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Branches and code coverage

Intended branches

• Updates the codeOwner of the provided _code.
Test coverage

Negative behavior

• Revert if _code is an empty code (bytes32(0)). (Prevents changing ownership for an
invalid code.)

Negative test
• Revert if the caller is not the current owner of the code. This ensures that only the
current owner can change ownership.

Negative test

Function call analysis

No external function calls found.

Function: setTraderReferralCodeByUser(byte[32] _code)

This sets the trader’s referral code— callable by user.

Inputs

• _code
• Control: Fully controlled by caller.
• Constraints: None.
• Impact: The referral code.

Branches and code coverage

Intended branches

• The referral code is correctly set for msg.sender.
Test coverage

Negative behavior

N/A.

Function call analysis

No external function calls found.

Zellic © 2023 ← Back to Contents Page 88 of 117

Avantis Smart Contract Security Assessment December 1, 2023

5.3. Module: TradingStorage.sol

Function: claimRebate()

This allows a referrer to claim their rebate.

Branches and code coverage

Intended branches

• If there is some value in rebates for msg.sender, transfer it to the caller and set this
value to zero.

Test coverage

Negative behavior

N/A.

Function call analysis

• this.usdc.transfer(msg.sender, this.rebates[msg.sender])
• What is controllable? msg.sender and this.rebates[msg.sender].
• If the return value is controllable, how is it usedandhowcan it gowrong?
No return value.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

5.4. Module: Trading.sol

Function: cancelOpenLimitOrder(uint256 _pairIndex, uint256 _index)

This cancels an open limit order.

Inputs

• _pairIndex
• Control: Fully controlled by caller.
• Constraints: None.
• Impact: The index of the trading pair.

• _index
• Control: Fully controlled by caller.
• Constraints: None.
• Impact: The index of the order.

Zellic © 2023 ← Back to Contents Page 89 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Branches and code coverage

Intended branches

• Unregisters the open limit order.
Test coverage

• Transfers the USDC to the trader.
Test coverage

Negative behavior

• Revert if block.number - o.block is less than limitOrdersTimelock.
Negative test

Function call analysis

• this.storageT.getOpenLimitOrder(msg.sender, _pairIndex, _index)
• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the open limit order; this limit order is updated and later stored in
storage.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

• this.storageT.transferUSDC(address(this.storageT), msg.sender,
o.positionSize + o.executionFee)

• What is controllable? msg.sender, o.positionSize, and
o.executionFee.

• If the return value is controllable, how is it usedandhowcan it gowrong?
Transfers the USDC balance associated with the canceled order back to
the caller — no return value.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.unregisterOpenLimitOrder(msg.sender, _pairIndex, _index)
• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

Function: closeTradeMarket(uint256 _pairIndex, uint256 _index,
uint256 _amount, bytes[] priceUpdateData)

This closes a trade usingmarket execution.

Zellic © 2023 ← Back to Contents Page 90 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Inputs

• _pairIndex
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the trading pair for the open trade.

• _index
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the open trade.

• _amount
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The collateral by which to update themargin.

• priceUpdateData
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: Pyth price update data.

Branches and code coverage

Intended branches

• Generates an new orderId for the close trade market and calls fulfill in the price
aggregator.

Test coverage
• The fulfill in the price aggregator fetches the price from the oracle and then calls
the callback function in TradingCallbacks.

Test coverage
• Thecallback functionunregisters the tradeandunregisters thependingmarketorder.

Test coverage

Negative behavior

• Revert if pending orders are more than or equal to the max pending market order
value.

Negative test
• Revert if themarket order is already closed.

Negative test
• Revert if the leverage of the trade is zero.

Negative test

Zellic © 2023 ← Back to Contents Page 91 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Function call analysis

• this.storageT.openTrades(msg.sender, _pairIndex, _index)
• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Checks the existenceof the open trade; incorrect valuesmay lead to incor-
rect trade information retrieval.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.openTradesInfo(msg.sender, _pairIndex, _index)
• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves additional information about the open trade; incorrect values
may lead to incorrect information retrieval.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert; no reentrancy scenarios.

• this.storageT.pendingOrderIdsCount(msg.sender)
• What is controllable? msg.sender.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the count of pending orders for the user.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.maxPendingMarketOrders()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns themax pendingmarket orders.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this.storageT.priceAggregator().getPrice(_pairIndex, Order-
Type.MARKET_CLOSE)

• What is controllable? pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the orderId of the current order.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.storePendingMarketOrder(PendingMarketOrder(Trade(msg.sender,
t.pairIndex, 0, 0, t.positionSizeUSDC, 0, t.buy, t.leverage, t.tp,
t.sl, 0), 0, t.openPrice, _slippageP), orderId, True)

• What is controllable? msg.sender, t.pairIndex, t.positionSizeUSDC,
t.buy, t.leverage, t.tp, t.sl, t.openPrice, and _slippageP.

• If the return value is controllable, how is it usedandhowcan it gowrong?
Stores the pendingmarket order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

Zellic © 2023 ← Back to Contents Page 92 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• this.storageT.priceAggregator().fulfill{value: msg.value}
• What is controllable? msg.value.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Fulfills the updatemargin order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

Function: executeLimitOrder(ITradingStorage.LimitOrder _orderType,
address _trader, uint256 _pairIndex, uint256 _index, bytes[] price-
UpdateData)

This executes a limit order (either open or close).

Inputs

• _orderType
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The type of limit order (OPEN, CLOSE, TP, SL, or LIQ).

• _trader
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The address of the trader.

• _pairIndex
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the trading pair.

• _index
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the order.

• priceUpdateData
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: Pyth price update data.

Branches and code coverage

Intended branches

• If order type is OPEN, the fulfill function calls executeLimitOpenOrderCallback; oth-
erwise, it calls executeLimitCloseOrderCallback.

Zellic © 2023 ← Back to Contents Page 93 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Test coverage
• For crypto trading pairs, use onePercentP to calculate trade price impact.

Test coverage
• Registers the trade and unregisters the open limit order.

Test coverage

Negative behavior

• Revert if the limit-order type is OPEN and no corresponding open limit order is found.
Negative test

• Revert if the limit-order type isCLOSE,SL, or LIQandnocorresponding trade is found.
Negative test

• Revert if the SL order type is specifiedwithout a valid stop-loss price.
Negative test

• Revert if the LIQ order type is specifiedwith a stop loss that would be triggered.
Negative test

Function call analysis

• this.storageT.hasOpenLimitOrder(_trader, _pairIndex, _index)
• What is controllable? _trader, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Checks for theexistenceofanopen limitorder—returns true if tradeexists.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.openTrades(_trader, _pairIndex, _index)
• What is controllable? _trader, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves the open trade— incorrect valuesmay lead to incorrect trade re-
trieval.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._getTradeLiquidationPrice(t) -> this.pairInfos.getTradeLiquidationPrice(t.trader,
t.pairIndex, t.index, t.openPrice, t.buy, t.initialPosToken,
t.leverage)

• What is controllable? t.trader, t.pairIndex, t.index, t.openPrice,
t.buy, t.initialPosToken, and t.leverage.

• If the return value is controllable, how is it usedandhowcan it gowrong?
Calculates the trade-liquidation price; incorrect values may lead to incor-
rect liquidation price calculation.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

• this.storageT.priceAggregator()
• What is controllable? N/A.

Zellic © 2023 ← Back to Contents Page 94 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• If the return value is controllable, how is it usedandhowcan it gowrong?
Returned value is the PriceAggregator contract, to which calls will be
made.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• aggregator.executions()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returned value is the Execute contract, to which calls will bemade.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• executor.triggered(triggeredLimitId)
• What is controllable? triggeredLimitId.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Checks if the limit order has been triggered and returns true if it is trig-
gered; it is not directly controllable.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

• executor.timedOut(triggeredLimitId)
• What is controllable? triggeredLimitId.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Checks if the limit order has timed out; returns true if that is the case.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

• aggregator.getPrice(_pairIndex, _orderType == LimitOrder.OPEN ? Order-
Type.LIMIT_OPEN : OrderType.LIMIT_CLOSE)

• What is controllable? _pairIndex and _orderType.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the orderId for the current order.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert; no reentrancy scenarios.

• this.storageT.storePendingLimitOrder(PendingLimitOrder(_trader,
_pairIndex, _index, _orderType), orderId)

• What is controllable? _trader, _pairIndex, _index, and _orderType.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Stores the pending limit order — no return value.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

• executor.storeFirstToTrigger(triggeredLimitId, msg.sender)
• What is controllable? triggeredLimitId and msg.sender.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Stores the first address to trigger the limit order — no return value.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

Zellic © 2023 ← Back to Contents Page 95 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• aggregator.fulfill{value: msg.value}
• What is controllable? msg.value.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Fulfills the updatemargin order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

Function: openTrade(ITradingStorage.Trade t, IExe-
cute.OpenLimitOrderType _type, uint256 _slippageP, bytes[] price-
UpdateData, uint256 _executionFee)

This opens a newmarket/limit trade.

Inputs

• t
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The details of the trade to open.

• _type
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: Market or limit or stop limit type of trade.

• _slippageP
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The slippage percentage.

• priceUpdateData
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: Pyth price update data.

• _executionFee
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The fee for executing the trade (in USDC).

Branches and code coverage

Intended branches

• If theorder type isMARKET, store thependingmarket order andcall the fulfill function
in aggregator to fulfill the order and unregister the pending order.

Zellic © 2023 ← Back to Contents Page 96 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Test coverage
• If the order type is LIMIT, store the open limit order.

Test coverage
• If TP and SL are provided, check if they are in correct range.

Test coverage

Negative behavior

• Revert if the open trades count plus the pending market open count plus the open
limit-orders count is greater than or equal to themax trades per pair.

Negative test
• Revert if leverage is not in the correct range.

Negative test
• Revert if the position size multiplied by leverage is less than the minimum leverage
position.

Negative test

Function call analysis

• this.storageT.priceAggregator()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returned value is the PriceAggregator contract, to which calls will be
made.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• aggregator.pairsStorage()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returned value is the TradingStorage contract, towhich callswill bemade.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this.storageT.openTradesCount(msg.sender, t.pairIndex)
• What is controllable? msg.sender and t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the count of open trades for the user and trading pair.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.pendingMarketOpenCount(msg.sender, t.pairIndex)
• What is controllable? msg.sender and t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the count of pendingmarket orders for the user and trading pair.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

Zellic © 2023 ← Back to Contents Page 97 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• this.storageT.openLimitOrdersCount(msg.sender, t.pairIndex)
• What is controllable? msg.sender and t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the count of open limit orders for the user and trading pair.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.maxTradesPerPair()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns themax amount of trades per pair.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this.storageT.pendingOrderIdsCount(msg.sender)
• What is controllable? msg.sender.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the count of pending orders for the user.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.maxPendingMarketOrders()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns themax pendingmarket orders.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• PositionMath.mul(t.positionSizeUSDC, t.leverage)
• What is controllable? t.positionSizeUSDC and t.leverage.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Calculates the position size based on leverage.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• pairsStored.pairMinLevPosUSDC(t.pairIndex)
• What is controllable? t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves theminimum leverage position USDC for the trading pair.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• pairsStored.pairMinLeverage(t.pairIndex)
• What is controllable? t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves theminimum leverage for the trading pair.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• pairsStored.pairMaxLeverage(t.pairIndex)

Zellic © 2023 ← Back to Contents Page 98 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• What is controllable? t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves themaximum leverage for the trading pair.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.transferUSDC(msg.sender, address(this.storageT),
t.positionSizeUSDC + _executionFee)

• What is controllable? msg.sender, t.positionSizeUSDC, and _execu-
tionFee.

• If the return value is controllable, how is it usedandhowcan it gowrong?
Transfers USDC from the caller to the storage contract.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.firstEmptyOpenLimitIndex(msg.sender, t.pairIndex)
• What is controllable? msg.sender and t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Finds the first empty open limit index for the user and trading pair.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.storeOpenLimitOrder(OpenLimitOrder(msg.sender,
t.pairIndex, index, t.positionSizeUSDC, t.buy, t.leverage, t.tp,
t.sl, t.openPrice, t.openPrice, block.number, _executionFee))

• What is controllable? msg.sender, t.pairIndex, index,
t.positionSizeUSDC, t.buy, t.leverage, t.tp, t.sl, t.openPrice,
block.number, and _executionFee.

• If the return value is controllable, how is it usedandhowcan it gowrong?
Stores an open limit order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• aggregator.executions().setOpenLimitOrderType(msg.sender, t.pairIndex,
index, _type)

• What is controllable? msg.sender, t.pairIndex, index, and _type.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Sets the open limit order type— no return value.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• aggregator.getPrice(t.pairIndex, OrderType.MARKET_OPEN)
• What is controllable? t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the orderId of the current order.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.storePendingMarketOrder(PendingMarketOrder(Trade(msg.sender,
t.pairIndex, 0, 0, t.positionSizeUSDC, 0, t.buy, t.leverage, t.tp,

Zellic © 2023 ← Back to Contents Page 99 of 117

Avantis Smart Contract Security Assessment December 1, 2023

t.sl, 0), 0, t.openPrice, _slippageP), orderId, True)
• What is controllable? msg.sender, t.pairIndex, t.positionSizeUSDC,
t.buy, t.leverage, t.tp, t.sl, t.openPrice, and _slippageP.

• If the return value is controllable, how is it usedandhowcan it gowrong?
Stores the pendingmarket order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• aggregator.fulfill{value: msg.value}
• What is controllable? msg.value.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Fulfills the updatemargin order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

Function: updateMargin(uint256 _pairIndex, uint256 _index, ITrad-
ingStorage.updateType _type, uint256 _amount, bytes[] priceUpdate-
Data)

This updates (deposit/withdraw) themargin for an open trade.

Inputs

• _pairIndex
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the trading pair for the open trade.

• _index
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the open trade.

• _type
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: Withdraw or deposit type of update.

• _amount
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The collateral by which to update themargin.

• priceUpdateData
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: Pyth price update data.

Zellic © 2023 ← Back to Contents Page 100 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Branches and code coverage

Intended branches

• If the trade is open and the new leverage lies between the correct range, the trade is
executed.

Test coverage
• Tokens are transferred to the user if it is a withdraw call.

Test coverage
• Tokens are transferred from trader address to the storage contract if it is a deposit
call.

Test coverage
• If margin fees are greater than zero, the open interest is updated.

Test coverage

Negative behavior

• Beingmarket closed for the trade prevents further updates (ALREADY_BEING_CLOSED).
Negative test

• The trade should exist with a positive leverage.
Negative test

• The new leverage should lie between theminimum andmaximum range.
Negative test

Function call analysis

• this.storageT.priceAggregator()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returned value is the PriceAggregator address, to which calls will be
made.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this.storageT.openTrades(msg.sender, _pairIndex, _index)
• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Checks the existenceof the open trade; incorrect valuesmay lead to incor-
rect trade information retrieval.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.openTradesInfo(msg.sender, _pairIndex, _index)
• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves additional information about the open trade; incorrect values
may lead to incorrect information retrieval.

Zellic © 2023 ← Back to Contents Page 101 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.pairInfos.getTradeRolloverFee(t.trader, t.pairIndex, t.index,
t.buy, t.initialPosToken, t.leverage)

• What is controllable? t.trader, t.pairIndex, t.index, t.buy,
t.initialPosToken, and t.leverage.

• If the return value is controllable, how is it usedandhowcan it gowrong?
Calculates the trade rollover fee.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• aggregator.pairsStorage().pairMinLeverage(t.pairIndex)
• What is controllable? t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves theminimum leverage for the trading pair.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• aggregator.pairsStorage().pairMaxLeverage(t.pairIndex)
• What is controllable? t.pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves themaximum leverage for the trading pair.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• aggregator.getPrice(_pairIndex, OrderType.UPDATE_MARGIN)
• What is controllable? _pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the new orderId for the current order.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• aggregator.storePendingMarginUpdateOrder(orderId, PendingMarginUp-
date(msg.sender, _pairIndex, _index, _type, _amount, i.lossProtection,
marginFees, t.leverage))

• What is controllable? orderId, msg.sender, _pairIndex, _index, _type,
_amount, and t.leverage.

• If the return value is controllable, how is it usedandhowcan it gowrong?
Stores the pendingmargin update order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.updateTrade(t)
• What is controllable? t.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Updates the trade information— no return value.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• aggregator.fulfill{value: msg.value}

Zellic © 2023 ← Back to Contents Page 102 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• What is controllable? msg.value.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Fulfills the updatemargin order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

Function: updateOpenLimitOrder(uint256 _pairIndex, uint256 _index,
uint256 _price, uint256 _tp, uint256 _sl)

This updates an open limit order.

Inputs

• _pairIndex
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the trading pair.

• _index
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the order.

• _price
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The price level to set (_PRECISION).

• _tp
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The take-profit price.

• _sl
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The stop-loss price.

Branches and code coverage

Intended branches

• If the new TP and SL are in the correct range, update the open limit order.
Test coverage

Negative behavior

Zellic © 2023 ← Back to Contents Page 103 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• Revert if the time since the order creation is less than the defined timelock period.
(Enforces timelock for order updates.)

Negative test
• Revert if _tp is set and not valid according to order type.

Negative test
• Revert if _sl is set and not valid according to order type.

Negative test

Function call analysis

• this.storageT.getOpenLimitOrder(msg.sender, _pairIndex, _index)
• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the open limit order; this limit order is updated and later stored in
storage.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

• this.storageT.updateOpenLimitOrder(o)
• What is controllable? o.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Updates the open limit order based on the provided information — no re-
turn value.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

Function: updateTpAndSl(uint256 _pairIndex, uint256 _index, uint256
_newSl, uint256 _newTP, bytes[] priceUpdateData)

This updates the take profit and stop loss for an open trade.

Inputs

• _pairIndex
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the trading pair.

• _index
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the order.

• _newSl
• Control: Fully controlled by the caller.

Zellic © 2023 ← Back to Contents Page 104 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• Constraints: None.
• Impact: The new stop-loss price.

• _newTP
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The new take-profit price.

• priceUpdateData
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: Pyth price update data.

Branches and code coverage

Intended branches

• The function calls _updateTp and _updateSl to update take profit and stop loss, re-
spectively.

• [x] Test coverage
• In_updateSl, if thepairdoesnothaveguaranteedstop lossenabled, call theupdateSl
in storage contract.

• [x] Test coverage
• In _updateSl, if the pair has guaranteed stop loss enabled, take the dev governance
fees from the initial position, update the trade, and call fulfill in the aggregator to fulfill
the order.

• [x] Test coverage

Negative behavior

• Revert if block.number - tpLastUpdated is less than limitOrdersTimelock.
• [] Negative test
• Revert if block.number - slLastUpdated is less than limitOrdersTimelock.
• [] Negative test
• If stop loss deviatesmore than maxSlDist, revert the transactions.
• [] Negative test
• Revert if leverage is zero.
• [] Negative test

Function call analysis

• this._updateTp(_pairIndex, _index, _newTP) ->
this.storageT.openTrades(msg.sender, _pairIndex, _index)

• What is controllable? msg.sender, _pairIndex, and _index.

Zellic © 2023 ← Back to Contents Page 105 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• If the return value is controllable, how is it usedandhowcan it gowrong?
Checks the existenceof the open trade; incorrect valuesmay lead to incor-
rect trade information retrieval.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._updateTp(_pairIndex, _index, _newTP) ->
this.storageT.openTradesInfo(msg.sender, _pairIndex, _index)

• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves additional information about the open trade; incorrect values
may lead to incorrect information retrieval.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._updateTp(_pairIndex, _index, _newTP) ->
this.storageT.updateTp(msg.sender, _pairIndex, _index, _newTp)

• What is controllable? msg.sender, _pairIndex, _index, and _newTp.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Updates the TP value— no return value.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) ->
this.storageT.openTrades(msg.sender, _pairIndex, _index)

• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Checks the existenceof the open trade; incorrect valuesmay lead to incor-
rect trade information retrieval.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) ->
this.storageT.openTradesInfo(msg.sender, _pairIndex, _index)

• What is controllable? msg.sender, _pairIndex, and _index.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Retrieves additional information about the open trade; incorrect values
may lead to incorrect information retrieval.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) ->
this.storageT.priceAggregator()

• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returned value is the PriceAggregator contract, to which calls will be
made.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

Zellic © 2023 ← Back to Contents Page 106 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) -> aggrega-
tor.pairsStorage().guaranteedSlEnabled(_pairIndex)

• What is controllable? _pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns if SL is guaranteed enabled for this pair index.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) -> aggrega-
tor.pairsStorage()

• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returned value is the TradingStorage contract, towhich callswill bemade.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) ->
this.storageT.updateSl(msg.sender, _pairIndex, _index, _newSl)

• What is controllable? msg.sender, _pairIndex, _index, and _newSl.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Updates the SL for the order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) ->
this.storageT.handleDevGovFees(t.trader, t.pairIndex, levPosUSDC / 2,
False, True, t.buy)

• What is controllable? None.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Thiscall handles feesbasedon tradeparameters, andcontrolling it directly
is not feasible.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) ->
this.storageT.updateTrade(t)

• What is controllable? None.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Updates the trade— no return value.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) -> aggrega-
tor.getPrice(_pairIndex, OrderType.UPDATE_SL)

• What is controllable? _pairIndex.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the orderId of the current order.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

Zellic © 2023 ← Back to Contents Page 107 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) -> aggrega-
tor.storePendingSlOrder(orderId, PendingSl(msg.sender, _pairIndex, _in-
dex, t.openPrice, t.buy, _newSl))

• What is controllable? msg.sender, _pairIndex, _index, and _newSl.
• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this._updateSl(_pairIndex, _index, _newSl, priceUpdateData) -> aggrega-
tor.fulfill{value: msg.value}

• What is controllable? msg.value.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Fulfills the updatemargin order — no return value.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert —- no reentrancy scenarios.

5.5. Module: Tranche.sol

Function: setWithdrawThreshold(uint256 _withdrawThreshold)

This sets the withdraw threshold for the contract.

Inputs

• _withdrawThreshold
• Control: Fully controlled by the caller.
• Constraints: Should be less than 100 * _PRECISION.
• Impact: The newwithdraw threshold value.

Branches and code coverage

Intended branches

• Updates the value of withdrawThreshold.
Test coverage

Negative behavior

• Revert if _withdrawThreshold is greater than 100 * _PRECISION.
Negative test

Zellic © 2023 ← Back to Contents Page 108 of 117

Avantis Smart Contract Security Assessment December 1, 2023

Function call analysis

No external function calls found.

5.6. Module: VaultManager.sol

Function: allocateRewards(uint256 rewards)

This allocates rewards to the LPs.

Inputs

• rewards
• Control: Fully controlled by the caller.
• Constraints: Should be greater than zero.
• Impact: The amount of rewards to allocate.

Branches and code coverage

Intended branches

• If the caller is not a trading contract, transfer assets from the caller to address(this)
and increase the totalRewards value.

Test coverage
• If caller is a trading contract, simply increase the totalRewards value.

Test coverage

Negative behavior

• Revert if rewards are zero.
Negative test

Function call analysis

• IERC20(this.junior.asset()).transferFrom(msg.sender, address(this), re-
wards)

• What is controllable? msg.sender and rewards.
• If the return value is controllable, how is it usedandhowcan it gowrong?
The reward amount is transferred from the caller to the contract — no re-
turn value.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.junior.asset()
• What is controllable? N/A.

Zellic © 2023 ← Back to Contents Page 109 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

5.7. Module: VeTranche.sol

Function: claimRewards(uint256 tokenId)

This claims rewards accumulated by tokenId.

Inputs

• tokenId
• Control: Fully controlled by caller.
• Constraints: None.
• Impact: The ID of the token for which rewards are claimed.

Branches and code coverage

Intended branches

• The function internally calls_claimRewards, whichupdates the rewardsand transfers
rewards to the caller.

Test coverage

Negative behavior

• Revert if caller is not the owner of the tokenId.
Negative test

Function call analysis

• this._claimRewards(tokenId) -> SafeERC20.safeTransfer(IERC20(this.tranche.asset()),
this._ownerOf(tokenId), this.rewardsByTokenId[tokenId])

• What is controllable? this._ownerOf(tokenId) and
this.rewardsByTokenId[tokenId].

• If the return value is controllable, how is it usedandhowcan it gowrong?
The reward amount is transferred to the owner of the token; an incorrect
ownermay result in incorrect reward transfer.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._claimRewards(tokenId) -> this.tranche.asset()
• What is controllable? N/A.

Zellic © 2023 ← Back to Contents Page 110 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

Function: forceUnlock(uint256 _tokenId)

This force unlocks a token if its lock time has passed— to be called by keepers.

Inputs

• _tokenId
• Control: Fully controlled by caller.
• Constraints: lockTimeByTokenId[_tokenId] should be less than
block.timestamp, and tokensByTokenId[_tokenId] should be greater
than zero.

• Impact: The ID of the token to unlock.

Branches and code coverage

Intended branches

• The function internally calls_claimRewards, whichupdates the rewardsand transfers
rewards to the owner of tokenId.

Test coverage
• The function burns the tokenwith id = tokenId.

Test coverage
• The shares are transferred back to the owner of the tokenId.

Test coverage

Negative behavior

• Revert if lockTimeByTokenId[_tokenId] > block.timestamp.
Negative test

• Revert if tokensByTokenId[_tokenId] = 0.
Negative test

Function call analysis

• this._claimRewards(_tokenId) -> SafeERC20.safeTransfer(IERC20(this.tranche.asset()),
this._ownerOf(tokenId), this.rewardsByTokenId[tokenId])

• What is controllable? this._ownerOf(_tokenId) and
this.rewardsByTokenId[_tokenId].

Zellic © 2023 ← Back to Contents Page 111 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• If the return value is controllable, how is it usedandhowcan it gowrong?
The reward amount is transferred to the owner of the token; an incorrect
ownermay result in incorrect reward transfer.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._claimRewards(_tokenId) -> this.tranche.asset()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

• this.tranche.transfer(this._ownerOf(_tokenId), this.tokensByTokenId[_tokenId])
• What is controllable? this._ownerOf(_tokenId) and
this.tokensByTokenId[_tokenId].

• If the return value is controllable, how is it usedandhowcan it gowrong?
The remainingunlocked tokensare transferred to theowner; incorrect val-
uesmay lead to incorrect token transfer.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

Function: lock(uint256 shares, uint256 endTime)

This locks a specified amount of shares until a specified end time.

Inputs

• shares
• Control: Fully controlled by the caller.
• Constraints: Should be greater than zero.
• Impact: The number of shares to lock.

• endTime
• Control: Fully controlled by the caller.
• Constraints: The endTime - block.timestamp should be between the
range getMinLockTime() and getMaxLockTime().

• Impact: The time until which the shares will be locked.

Branches and code coverage

Intended branches

• The endTime - block.timestamp should be between the range getMinLockTime()
and getMaxLockTime().

Test coverage

Zellic © 2023 ← Back to Contents Page 112 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• Check if balanceOf caller is greater than the value of shares.
Test coverage

• Mint NFT to the caller and increment the nextTokenId counter.
Test coverage

Negative behavior

• The endTime - block.timestamp is outside the expected range.
Negative test

• The shares amount is equal to zero.
Negative test

• The balanceOf caller is less than the shares amount.
Negative test

Function call analysis

• this.getMaxLockTime() -> this.vaultManager.maxLockTime()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this.getMinLockTime() -> this.vaultManager.minLockTime()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this.tranche.balanceOf(msg.sender)
• What is controllable? msg.sender.
• If the return value is controllable, how is it usedandhowcan it gowrong?
It is the balance of msg.sender— should be greater than shares for a suc-
cessful call.

• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• Counters.current(this.tokenIds)
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this.tranche.transferFrom(msg.sender, address(this), shares)
• What is controllable? msg.sender and shares.
• If the return value is controllable, how is it usedandhowcan it gowrong?

Zellic © 2023 ← Back to Contents Page 113 of 117

Avantis Smart Contract Security Assessment December 1, 2023

N/A.
• What happens if it reverts, reenters or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• Counters.increment(this.tokenIds)
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

Function: unlock(uint256 tokenId)

This unlocks a specific tokenId.

Inputs

• tokenId
• Control: Fully controlled by the caller.
• Constraints: The owner of tokenId should be msg.sender.
• Impact: The ID of the token to unlock.

Branches and code coverage

Intended branches

• Thenumber of tokens to unlock for the provided tokenId should be greater than zero.
Test coverage

• The owner of tokenId should be msg.sender.
Test coverage

• The fee returned by checkUnlockFee should be sent to the vault manager.
Test coverage

• The remaining amount should be transferred to msg.sender, and the tokenId should
be burned.

Test coverage
• Updates the rewards for the caller and transfers the reward amount.

Test coverage
• Deletes themappings for the tokenId.

Test coverage

Negative behavior

• Revert if the caller is not msg.sender.
Negative test

Zellic © 2023 ← Back to Contents Page 114 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• Revert if the number of tokens to unlock for the provided tokenId is zero.
Negative test

Function call analysis

• this.checkUnlockFee(tokenId) -> this.getEarlyWithdrawFee(this.tokensByTokenId[tokenId])
-> this.tranche.feesOn()

• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns true if fees are on, otherwise false; return value is not in control of
the user.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this.checkUnlockFee(tokenId) -> this.getEarlyWithdrawFee(this.tokensByTokenId[tokenId])
-> this.vaultManager.earlyWithdrawFee()

• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
Returns the early withdrawal fees; return value is not in control of the user.

• What happens if it reverts, reenters or does other unusual control flow?
N/A.

• this.checkUnlockFee(tokenId) -> MathUpgradeable.mulDiv(fee, timeLeft,
totalTime, Rounding.Up)

• What is controllable? fee, timeLeft, and totalTime.
• If the return value is controllable, how is it usedandhowcan it gowrong?
The fee calculation is based on these parameters; incorrect values may
lead to incorrect fee calculation.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

• this._claimRewards(tokenId) -> SafeERC20.safeTransfer(IERC20(this.tranche.asset()),
this._ownerOf(tokenId), this.rewardsByTokenId[tokenId])

• What is controllable? this._ownerOf(tokenId) and
this.rewardsByTokenId[tokenId].

• If the return value is controllable, how is it usedandhowcan it gowrong?
The reward amount is transferred to the owner of the token; an incorrect
owner will be reverted in the previous check.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this._claimRewards(tokenId) -> this.tranche.asset()
• What is controllable? N/A.
• If the return value is controllable, how is it usedandhowcan it gowrong?
N/A.

• What happens if it reverts, reenters, or does other unusual control flow?
N/A.

• this.tranche.transfer(msg.sender, this.tokensByTokenId[tokenId] - fee)

Zellic © 2023 ← Back to Contents Page 115 of 117

Avantis Smart Contract Security Assessment December 1, 2023

• What is controllable? msg.sender and this.tokensByTokenId[tokenId]
- fee.

• If the return value is controllable, how is it usedandhowcan it gowrong?
The remaining unlocked tokens are transferred to the caller; incorrect val-
uesmay lead to incorrect token transfer.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

• this.tranche.transfer(address(this.vaultManager), fee)
• What is controllable? fee.
• If the return value is controllable, how is it usedandhowcan it gowrong?
The fee amount is transferred to the vault manager; an incorrect fee may
lead to incorrect fee transfer.

• What happens if it reverts, reenters, or does other unusual control flow?
If it reverts, the entire call will revert — no reentrancy scenarios.

Zellic © 2023 ← Back to Contents Page 116 of 117

Avantis Smart Contract Security Assessment December 1, 2023

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the Basemainnet.

During our assessment on the scoped Avantis contracts, we discovered 38 findings. Six critical
issues were found. Sevenwere of high impact, eight were of medium impact, 10 were of low im-
pact, and the remaining findings were informational in nature. Avantis Labs, Inc. acknowledged
all findings and implemented fixes.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its
scope; in other words, the evaluation results do not guarantee the absence of any subsequent
issues. Zellic, of course, also cannot make guarantees about any code added to the project af-
ter the version reviewed during our assessment. Furthermore, because a single assessment
can never be considered comprehensive, we always recommendmultiple independent assess-
ments paired with a bug bounty program.

For eachfinding, Zellic provides a recommendedsolution. All code samples in these recommen-
dations are intended to convey how an issuemay be resolved (i.e., the idea), but theymay not be
tested or functional code. These recommendations are not exhaustive, and we encourage our
partners to consider them as a starting point for further discussion. We are happy to provide
additional guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not con-
strue any information in this report as legal, tax, investment, or financial advice. Nothing con-
tained in this report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2023 ← Back to Contents Page 117 of 117

	About Zellic
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Avantis
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Stop loss higher than openPrice may cause fund loss
	Unsafe cast in take profit can lead to fund loss
	The function setWithdrawThreshold lacks access control
	Reserve requirement and fees checked before withdrawal
	Locked shares have undue access to historical rewards
	Max profit can exceed amount reserved from vault
	Update margin uses new leverage for balance release
	Partial trades update open-interest incorrectly
	Referrer rebates must not decrease totalRewards
	Precision loss in totalLockPoints causes undue rewards and insolvency
	Wrong reserve ratio returned by getReserveRatio when constrained
	Loss-protection tier is reduced for trades that greatly reduce skew
	Tranche trading inflow is much less than outflow in zero skew
	Arbitrage opportunities with older price feeds
	The useBackupOnly mode allows undue margin update withdrawals
	The applyReferralClose function returns fee with referrer rebate
	Bot latency may prevent execution of limit-close orders
	Referrer-code transfers overwrite recipient codes and misalign tiers
	Delayed force unlock causes reward insolvency
	Price impact is not tracked cumulatively
	Loss protection reduces the -100% cap on losses
	Variable reuse causes totalPrincipalDeposited miscalculation
	Governance fee charged without market-order placement
	One account can register multiple referral codes
	Vault manager withdrawals cannot access the entire junior tranche
	The maxRedeem function should comply with ERC-4626
	Incorrect access control of setVaultManager causes update lockout
	Trader contract can bypass max trades per pair
	Limit-order timelock is not initialized on open
	Partial closes emit incorrect value in TradeReferred event
	Function openTrade lacks incorrect-payment sanity checks
	Timestamp updated in memory instead of storage
	Withdraw to different receiver imbalances stats
	Tranche name hardcodes junior symbol
	Function distributeRewards does not need totalLockPoints
	Incorrect ternary operator precedence in limit-open-order callback
	Unused vault-fee parameter must be zero
	Execute trigger check never fails due to atomicity

	Discussion
	Referral code incentives are misaligned
	VeTranche NFT info should be struct
	No way to remove user from Trading whitelist
	Pyth price can become negative or erratic
	Tranche has unnecessary ReentrancyGuard
	Checks-effects-interactions pattern broken
	Typos

	Threat Model
	Module: Execute.sol
	Module: Referral.sol
	Module: TradingStorage.sol
	Module: Trading.sol
	Module: Tranche.sol
	Module: VaultManager.sol
	Module: VeTranche.sol

	Assessment Results
	Disclaimer

